تأثیر نوع و غلظت حلال بر میزان استخراج ترکیبات فنلی و سنجش فعالیت آنتیاکسیدانی برگ سیاه ولیک (Crataegus elbursensis L.) جمعآوری شده از استان گلستان
الموضوعات :محمد مقدم 1 , لیلا مهدی زاده 2
1 - گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
2 - گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
الکلمات المفتاحية: حلال, ترکیبات فنلی, ظرفیت آنتیاکسیدانی, عصاره, ولیک,
ملخص المقالة :
به منظور بررسی اثر نوع و غلظت حلال بر میزان استخراج ترکیبات فنلی و ارزیابی فعالیت آنتی اکسیدانی برگ های گیاه سیاه ولیک (Crataegus elbursensis L.)، پژوهشی به صورت دو آزمایش مجزا انجام شد. در آزمایش اول اثر نوع حلال (استون، اتانول و متانول) در سه غلظت (50، 80 و 100%) بر محتوای ترکیبات فنلی کل استخراج شده از برگ سباه ولیک بررسی شد. در آزمایش دوم ظرفیت آنتی اکسیدانی عصاره بدست آمده از بهترین حلالی که بالاترین میزان استخراج ترکیبات فنلی را داشت (متانول 80%) به دو روش ارزیابی آنتی اکسیدانی کل و ظرفیت احیای آهن بررسی شد. نتایج حاصل از این آزمایشات نشان داد هر سه حلال استون، اتانول و متانول در حالت مخلوط با آب نسبت به حالت خالص توانایی بیشتری جهت استخراج ترکیبات فنلی دارند. بیشترین میزان ترکیبات فنلی کل ( mg GAE/ g DW118) در غلظت 80 درصد کلیه حلال ها، به ویژه در متانول 80 درصد حاصل شد. نتایج بررسی فعالیت آنتیاکسیدانی نشان داد با افزایش غلظت عصاره تا 500 میکروگرم در میلی لیتر، فعالیت آنتی اکسیدانی کل (8/0 میلیگرم بر میلیلیتر) افزایش یافت. بررسی ظرفیت احیاکنندگی آهن حاکی از آن است که با افزایش غلظت عصاره تا 800 میکرو گرم در میلی لیتر، میزان جذب محلول های حاوی عصاره به طور قابل ملاحظه ای افزایش یافت. بنابراین با توجه به نتایج حاصل از این تحقیق، برگ های این گیاه می توانند به عنوان منبع فنل و آنتی اکسیدان در صنایع مختلف استفاده شوند.
Arabshahi-Delouee, S. and Urooj, A. (2007). Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chemistry, 102:1233–1240.
Bernatonienė, J., Masteikova, R., Majienė, D., Savickas, A., Kėvelaitis, E., Bernatonienė, R., Dvorácková, K., Civinskiene, G., Lekas, R., Vitkevicius, K. and Pečiūra, R. (2008). Free radical-scavenging activities of Crataegus monogyna extracts. Medicina, 44(9): 706-716.
Froehlicher, T., Hennebelle, T., Martin-Nizard, F., Cleenewerck, P., Hilbert, J.L., Trotin, F. and Grec, S. (2009). Phenolic profiles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts. Food Chemistry, 115(3): 897-903.
Ghahreman, A. 2007. Flora of Iran. Research institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
Hayouni, EA., Abedrabba, M., Bouix, M. and Hamdi, M. (2007). The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chemistry, 105(3): 1126-1134.
Huda-Faujan, N., Noriham, A., Norrakiah, AS. and Babji, AS. (2009). Antioxidant activity of plants methanolic extracts containing phenolic compounds.” African Journal of Biotechnology, 8: 484-489.
Jung, CH., Seog, H.M., Choi, IW., Park, MW. and Cho, HY. (2006). Antioxidant properties of various solvent extracts from wild ginseng leaves. LWT-Food Science and Technology, 39: 266-274.
Kumaran, A. and Karunakaran, RJ. (2007). In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT-Food Science and Technology, 40(2): 344-352.
Mohsen, SM. and Ammar, AS. (2009). Total phenolic contents and antioxidant activity of corn tassel extracts. Food Chemistry, 112(3): 595-598.
Nabavi, SM., Ebrahimzadeh, MA., Nabavi, SF., Hamidinia, A. and Bekhradnia, AR. (2008). Determination of antioxidant activity, phenol and flavonoids content of Parrotia persica Mey. Pharmacologyonline, 2: 560-567.
Pham, HNT., Nguyen, VT., Vuong, QV. , Bowyer, MC. and Scarlett, CJ. (2015). Effect of extraction solvents and drying methods on the physicochemical and antioxidant properties of Helicteres hirsuta Lour. leaves. Technologies, 3(4): 285-301.
Prieto, P., Pineda, M. and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269: 337-341.
Rabiei, K., Bekhradnia, S., Nabavi, SM., Nabavi, SF. and Ebrahimzadeh, MA. (2012). Antioxidant activity of polyphenol and ultrasonic extracts from fruits of Crataegus pentagyna subsp. elburensis. Natural Product Research, 26(24): 2353-2357.
Rumbaoa, RGO., Cornago, DF. and Geronimo, IM. (2009). Phenolic content and antioxidant capacity of Philippine potato (Solanum tuberosum) tubers. Journal of Food Composition and Analysis, 22: 546-550.
Salmanian, S., Sadeghi Mahoonak, AR., Alami, M. and Ghorbani, M. (2014). Phenolic content, antiradical, antioxidant, and antibacterial properties of hawthorn (Crataegus elbursensis) seed and pulp extract. Journal of Agricultural Science and Technology, 16: 343-354.
Shahidi, F. and Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of Functional Foods, 18: 820-897.
Shahidi, F. and Zhong, Y. (2015). Measurement of antioxidant activity”. Journal of Functional Foods, 18: 757-781.
Shortle, E., O'Grady, MN., Gilroy, D., Furey, A., Quinn, N. and Kerry, JP. (2014). Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates. Meat Science, 98(4): 828-834.
Singh, S. and Singh, RP. (2008). In Vitro Methods of Assay of Antioxidants: An Overview.” Food Reviews International, 24: 392-415.
Slinkard, K. and Singleton, VL. (1977). Total phenol analysis; automation and comparison with manual methods. American Journal of Enology and Viticulture, 28: 49-55.
Soares, AA., Souza, CGM., Daniel, FM., Ferrari, GP. , Costa, SMG. and Peralta, RM. (2009). Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity. Food Chemistry, 112: 775-781.
Spigno, G., Tramelli, L. and De Faveri, DM. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81(1): 200-208.
Suzuki, M., Watanabe, T., Miura, A., Harashima, E., Nakagawa, Y. and Tsuji, K. (2002). An extraction solvent optimum for analyzing polyphenol contents by Folin-Denis assay. Nippon Shokuhin Kagaku Kaishi, 49: 507-511.
Tajik, S., Zarin Kamar, F. and Niknam, V. (2018). Evaluation of antioxidant activity and total phenolic content of Crocus sativus L. organs. The Modares Semiannual Biological Sciences, 8(3): 127-138.
Trabelsi, N., Megdiche, W. , Ksouri, R. , Falleh, H. , Oueslati, S. , Soumaya, B. , Hajlaoui, H. and Abdelly, C. (2010). Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT-Food Science and Technology, 43(4): 632-639.
Turkmen, N., Sari, F. and Velioglu, YS. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chemistry, 99(4): 835-841.
Yildirim, A., Mavi, A. and Kara, AA. (2001). Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. Journal of Agricultural and Food Chemistry, 49: 4083-4089.
Yu, J., Wang, L. , Walzem, RL., Miller, EG., Pike, LM. and Patil, BS. (2005). Antioxidant activity of citrus limonoids, flavonoids, and coumarins. Journal of Agricultural and Food Chemistry, 53(6): 2009-2014.
Zargari, A. (1997). A Medicinal Plants (Volume 4th). Tehran university publications, Tehran.
_||_
Arabshahi-Delouee, S. and Urooj, A. (2007). Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chemistry, 102:1233–1240.
Bernatonienė, J., Masteikova, R., Majienė, D., Savickas, A., Kėvelaitis, E., Bernatonienė, R., Dvorácková, K., Civinskiene, G., Lekas, R., Vitkevicius, K. and Pečiūra, R. (2008). Free radical-scavenging activities of Crataegus monogyna extracts. Medicina, 44(9): 706-716.
Froehlicher, T., Hennebelle, T., Martin-Nizard, F., Cleenewerck, P., Hilbert, J.L., Trotin, F. and Grec, S. (2009). Phenolic profiles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts. Food Chemistry, 115(3): 897-903.
Ghahreman, A. 2007. Flora of Iran. Research institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
Hayouni, EA., Abedrabba, M., Bouix, M. and Hamdi, M. (2007). The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chemistry, 105(3): 1126-1134.
Huda-Faujan, N., Noriham, A., Norrakiah, AS. and Babji, AS. (2009). Antioxidant activity of plants methanolic extracts containing phenolic compounds.” African Journal of Biotechnology, 8: 484-489.
Jung, CH., Seog, H.M., Choi, IW., Park, MW. and Cho, HY. (2006). Antioxidant properties of various solvent extracts from wild ginseng leaves. LWT-Food Science and Technology, 39: 266-274.
Kumaran, A. and Karunakaran, RJ. (2007). In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT-Food Science and Technology, 40(2): 344-352.
Mohsen, SM. and Ammar, AS. (2009). Total phenolic contents and antioxidant activity of corn tassel extracts. Food Chemistry, 112(3): 595-598.
Nabavi, SM., Ebrahimzadeh, MA., Nabavi, SF., Hamidinia, A. and Bekhradnia, AR. (2008). Determination of antioxidant activity, phenol and flavonoids content of Parrotia persica Mey. Pharmacologyonline, 2: 560-567.
Pham, HNT., Nguyen, VT., Vuong, QV. , Bowyer, MC. and Scarlett, CJ. (2015). Effect of extraction solvents and drying methods on the physicochemical and antioxidant properties of Helicteres hirsuta Lour. leaves. Technologies, 3(4): 285-301.
Prieto, P., Pineda, M. and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269: 337-341.
Rabiei, K., Bekhradnia, S., Nabavi, SM., Nabavi, SF. and Ebrahimzadeh, MA. (2012). Antioxidant activity of polyphenol and ultrasonic extracts from fruits of Crataegus pentagyna subsp. elburensis. Natural Product Research, 26(24): 2353-2357.
Rumbaoa, RGO., Cornago, DF. and Geronimo, IM. (2009). Phenolic content and antioxidant capacity of Philippine potato (Solanum tuberosum) tubers. Journal of Food Composition and Analysis, 22: 546-550.
Salmanian, S., Sadeghi Mahoonak, AR., Alami, M. and Ghorbani, M. (2014). Phenolic content, antiradical, antioxidant, and antibacterial properties of hawthorn (Crataegus elbursensis) seed and pulp extract. Journal of Agricultural Science and Technology, 16: 343-354.
Shahidi, F. and Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of Functional Foods, 18: 820-897.
Shahidi, F. and Zhong, Y. (2015). Measurement of antioxidant activity”. Journal of Functional Foods, 18: 757-781.
Shortle, E., O'Grady, MN., Gilroy, D., Furey, A., Quinn, N. and Kerry, JP. (2014). Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates. Meat Science, 98(4): 828-834.
Singh, S. and Singh, RP. (2008). In Vitro Methods of Assay of Antioxidants: An Overview.” Food Reviews International, 24: 392-415.
Slinkard, K. and Singleton, VL. (1977). Total phenol analysis; automation and comparison with manual methods. American Journal of Enology and Viticulture, 28: 49-55.
Soares, AA., Souza, CGM., Daniel, FM., Ferrari, GP. , Costa, SMG. and Peralta, RM. (2009). Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity. Food Chemistry, 112: 775-781.
Spigno, G., Tramelli, L. and De Faveri, DM. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81(1): 200-208.
Suzuki, M., Watanabe, T., Miura, A., Harashima, E., Nakagawa, Y. and Tsuji, K. (2002). An extraction solvent optimum for analyzing polyphenol contents by Folin-Denis assay. Nippon Shokuhin Kagaku Kaishi, 49: 507-511.
Tajik, S., Zarin Kamar, F. and Niknam, V. (2018). Evaluation of antioxidant activity and total phenolic content of Crocus sativus L. organs. The Modares Semiannual Biological Sciences, 8(3): 127-138.
Trabelsi, N., Megdiche, W. , Ksouri, R. , Falleh, H. , Oueslati, S. , Soumaya, B. , Hajlaoui, H. and Abdelly, C. (2010). Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT-Food Science and Technology, 43(4): 632-639.
Turkmen, N., Sari, F. and Velioglu, YS. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chemistry, 99(4): 835-841.
Yildirim, A., Mavi, A. and Kara, AA. (2001). Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. Journal of Agricultural and Food Chemistry, 49: 4083-4089.
Yu, J., Wang, L. , Walzem, RL., Miller, EG., Pike, LM. and Patil, BS. (2005). Antioxidant activity of citrus limonoids, flavonoids, and coumarins. Journal of Agricultural and Food Chemistry, 53(6): 2009-2014.
Zargari, A. (1997). A Medicinal Plants (Volume 4th). Tehran university publications, Tehran.