Designing real-time biosensors and chemical sensors based on symmetrical photonic crystal heterostructures
الموضوعات :maryam sharifi 1 , Habib Tajalli 2 , Hamid Pashaei Adl 3 , Payman Tajalli 4
1 - Faculty of physics, Tabriz University, Tabriz, Iran
2 - Biophotonics Research Center,Tabriz Branch, Islamic Azad University
3 - University of Valencia
4 - Germany
الکلمات المفتاحية: Photonic crystals, Biosensor, Transfer matrix method, Topological Edge Modes, Light-Matter interaction,
ملخص المقالة :
In this paper, we introduce and analytically demonstrate a novel biosensor based on the light-matter interaction in a classic topological photonic crystal (PC) heterostructure, which consists of two opposite-facing 5-period PCs separated by a microfluidic channel. Because of the excitation of topological edge mode (TEM) at the interface of the two PCs, the strong coupling between incident light and TEM produces a high-quality resonance peak, which can be used to detect very small changes in the refractive index of biomaterials such as Jurkat Cells inside the microfluidic channel. The proposed biosensor has a sensitivity as high as 240 nm/RIU and figure of merit (FOM) higher than 250.
[1] D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, "Electrochemical biosensors-sensor principles and architectures," Sensors, Vol. 8, pp. 1400-1458, 2008.
[2] O. A. Sadik, A.O. Aluoch, and A. Zhou, “Status of biomolecular recognition using electrochemical techniques,” Biosensors Bioelectron. Vol. 24, pp. 2749–2765, 2009.
[3] R. S. Marks, D. Cullen, C. Lowe, H. H. Weetall, and I. Karube, Handbook of Biosensors and Biochips. Hoboken, NJ, USA: Wiley, 2007.
[4] M. Sharifi, H. Pashaei Adl, H. Tajalli, and A. Bahrampour, “Design of a Surface Plasmon resonance biosensor with one dimensional photonic crystals to diagnosis of cancer,” Iranian Journal of Physics Research, Vol. 16, pp. 133-138, 2016.
[5] F. Baldini, A. N. Chester, J. Homola, and S. Martellucci, Optical Chemical Sensors, The Netherlands: Springer, 2006.
[6] F. Bayat, S. Ahmadi-Kandjani, and H. Tajalli “Designing real-time biosensors and chemical sensors based on defective 1-D photonic crystals,” IEEE Photon. Technol. Lett. Vol. 28, pp. 1843–1846, 2016.
[7] S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sensors, Vol. 1, pp. 1471–1479, 2016.
[8] S. Mariani, L. Pino, L.M. Strambini, L. Tedeschi, and G. Barillaro, “Femtomole detection of proteins using a label-free nanostructured porous silicon interferometer for perspective ultrasensitive biosensing,” ACS Anal. Chem. Vol. 17, pp. 8502–8509, 2016.
[9] S. Surdo, F. Carpignano, L.M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio) sensing applications,” RSC Adv. Vol. 4, pp. 51935–51941, 2014.
[10] H. Pashaei Adl, F. Bayat, N. Ghorani, S. Ahmadi-Kandjani, H. Tajalli, "A defective 1-D photonic crystal-based chemical sensor in total internal reflection geometry," IEEE Sensors, Vol. 17, pp. 4046-4051, 2017.
[11] Patolsky F, G. Zheng, and C.M. Lieber, “Nanowire sensors for medicine and the life sciences,” Nanomedecine. Vol. 1, pp. 51-65, 2006.
[12] N.M.M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors. Vol. 14, pp. 15458-15479, 2014.
[13] A. J. Haes, L. Chang, W.L. Klein, and R. P. Van Duyne “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Amer. Chem. Soc. Vol. 127, pp. 2264–2271, 2005.
[14] H. S. Jang, K. No Park, Ch. Duk Kang, J. Pyo Kim, S. Jun Sim, and K. Shik Lee, “Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen,” Opt. Commun. Vol. 282, pp. 2827–2830, 2009.
[15] S. Balci and C. Kocabas, “Ultra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons,” Opt. Lett. Vol. 40, pp. 3424–3427, 2015.
[16] W. Wang, P. Vasa, R. Pomraenke, R. Vogelgesang, A. De Sio, E. Sommer, M. Maiuri, C. Manzoni, G. Cerullo, and Ch. Lienau, “Interplay between Strong Coupling and Radiative Damping of Excitons and Surface Plasmon Polaritons in Hybrid Nanostructures,” ACS Nano, Vol. 8, pp. 1056–1064, 2014.
[17] L. Shi, T.K. Hakala, H.T. Rekola, J.P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. Vol. 112, pp. 153002 (1-22), 2014.
[18] F. Barachati, J. Simon, Y. A. Getmanenko, S. Barlow, S. R. Marder, and S. Kéna-Cohen, “Tunable Third-Harmonic Generation from Polaritons in theUltrastrong Coupling Regime,” ACS Photonics, Vol. 51, pp. 119–125, 2018.
[19] R.-Q. Li, D. Hernángomez-Pérez, F. J. García-Vidal, and A. I. Fernández-Domínguez, “Transformation Optics Approach to Plasmon-Exciton Strong Coupling in Nanocavities,” Phys. Rev. Lett. Vol. 117, pp. 10740 (1-12), 2016.
[20] Y. M. Qing, H.F. Ma, and T.J. Cui “Investigation of strong multimode interaction in a graphene-based hybrid coupled plasmonic system,” Carbon, Vol. 145, pp. 596–602, 2019.
[21] Y. M. Qing, H.F. Ma, and T.J. Cui “Theoretical Analysis of Tunable Multimode Coupling in a Grating-Assisted Double-Layer Graphene Plasmonic System,” ACS Photonics, Vol. 6, pp. 2884–2893, 2019.
[22] J. Nong, W. Wei, W. Wang, G. Lan, Zh. Shang, J. Yi, and L. Tang “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express, Vol. 26, pp. 1633–1644, 2018.
[23] Y. M. Qing, H.F. Ma, and T.J. Cui, “Flexible control of light trapping and localization in a hybrid Tamm plasmonic system,” Opt. Lett. Vol. 44, pp. 3302–3305, 2019.
[24] J. Hu, W. Liu, W. Xie, W. Zhang, E. Yao, Y. Zhang, and Q. Zhan “Strong coupling of optical interface modes in a 1D topological photonic crystal heterostructure/Ag hybrid system,” Opt. Lett. Vol. 44, pp. 5642–5645, 2019.
[25] H. Lu, Y. Li, H. Jiao, Z. Li, D. Mao, and J. Zhao, “Induced reflection in Tamm plasmon systems,” Opt. Express, Vol. 27, pp.5383–5392, 2019.
[26] J. P. Martinez-Pastor, H. Pashaei Adl, S. Gorji, J. Navarro-Arenas, G. Muñoz-Matutano, I. Suárez, V. S. Chirvony, A. F. Gualdrón-Reyes, and I. Mora-Seró “Lead halide perovskite nanocrystals: optical properties and nanophotonics”, In Low-Dimensional Materials and Devices, Vol. 11800, pp. 1180013, 2021
[27] H. Pashaei Adl, S. Gorji, M. Karimi Habil, I. Suárez, V. S. Chirvony, A. F. Gualdrón-Reyes, I. Mora-Seró, L. M. Valencia, M. de la Mata, J. Hernández-Saz, S. I. Molina, C. J. Zapata-Rodríguez, and J. P. Martínez-Pastor, “Purcell enhancement and wavelength shift of emitted light by CsPbI3 perovskite nanocrystals coupled to hyperbolic metamaterials,” ACS photonics, Vol. 7, pp. 3152-3160, 2020.
[28] G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions,” Phys. Rev. Lett. Vol. 114, pp. 157401, 2015.
[29] Q. Y. Lin, Zh. Li, K. A. Brown, M. N. O'Brien, M. B. Ross, Y. Zhou, S. Butun, P.-Ch. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and Ch. A. Mirkin, “Strong Coupling between Plasmonic Gap Modes and Photonic Lattice Modes in DNA-Assembled Gold Nanocube Arrays,” Nano Lett. Vol. 15, pp. 4699–4703, 2015.
[30] A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of Strong Light-Matter Coupling Using the Capacitance of Metamaterial Nanocavities,” Nano Lett. Vol. 15, 1959–1966, 2015.
[31] L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat. Photonics, Vol. 8, pp. 821–829, 2014.
[32] X. Wang, Y. Liang, L. Wu, J. Guo, X. Dai, and Y. Xiang, “Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene,” Opt. Lett. Vol. 43, pp. 4256–4259, 2018.
[33] W. Gao, X. Hu, Ch. Li, J. Yang, Zh. Chai, J. Xie, and Q. Gong, “Fano-resonance in one-dimensional topological photonic crystal heterostructure,” Opt. Express, Vol. 26, pp. 8634–8644, 2018.
[34] L. Wang, X. Hu, Ch. Li, J. Yang, Zh. Chai, J. Xie, and Q. Gong, “Zak phase and topological plasmonic Tamm states in one-dimensional plasmonic crystals,” Opt. Express, Vol. 26, pp. 28963–28975, 2018.
[35] M. S. Jazi, S. Mohammadi, Yaghoub Yazdani, S. Sedighi, A. Memarian, and Mehrdad Aghaei,“Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells. Iranian journal of basic medical sciences,” Vol. 19, pp. 779-789, 2014.
[36] X. Wang, Y. Liang, L. Wu, J. Guo, X. Dai, Y. Xiang, “Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with grapheme,” Optics letters, Vol. 43, pp.4256-4259, 2018.
[37] S. M. Wang and L. Gao, “Nonlinear responses of the periodic structure composed of single negative materials,” Opt. Commun., Vol. 281, pp. 197–204, 2006.
[38] H. Pashaeiadl, M. Naserpour, and C. J. Zapata-Rodriguez,"Scattering of electromagnetic waves by a graphene-coated thin cylinder of left-handed metamaterial," Optik, Vol. 159, pp. 123-132, 2018.
[39] S. R. Entezar, et al. “Optical isolation via one-dimensional magneto-photonic crystals containing nonlinear defect layer,” Opt. Commun., Vol. 352, pp. 91–95, 2015.
[40] B. T. Moghaddam, S. R. Entezar, and H. Pashaei Adl, "Nonlinear properties of a graded-index photonic heterostructure," Pramana, Vol. 80, pp. 887-894, 2013.
[41] Y. M. Qing, H. F. Ma, L. Wei Wu, and T. Jun Cui “Manipulating the light-matter interaction in a topological photonic crystal heterostructure,” Opt. Express. Vol. 28, pp. 34904-34915, 2020.
[42] D. Gao, W. Mao, R. Zhang, J. Liu, Q. Zhao, and W.Y. Tam, “Tunable interface state in one dimensional composite photonic structure” Opt. Comm. Vol. 453, pp. 124324, 2019.
[43] R. Ameling, Lutz Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. Vol. 97, pp. 253116 (1-3), 2010.
[44] J. Ye and P. Van Dorpe, “Improvement of Figure of Merit for Gold Nanobar Array Plasmonic Sensors,” Plasmonics, Vol. 6, pp. 665–671, 2011.
[45] C. Huang, Ch. Huang, J. Ye, Sh. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. Vol. 100, pp. 173114, 2012.