Using an Appropriate Controller for Independent Current Control for Motoring of Force Windings of Bearing less Induction Motor
الموضوعات : journal of Artificial Intelligence in Electrical Engineering
1 -
الکلمات المفتاحية: bearingless induction, suspension, flux distribution, Sensors, control improvement,
ملخص المقالة :
A bearingless induction machine has combined characteristics of induction motor and magnetic bearings. Therefore, the advantages are small size and low-cost. In the magnetic suspension of the bearingless motors, suspension forces are generated based on the feedback signals of displacement sensors detecting the movement of the rotor shaft. The suspension forces are generated taking an advantage of the strong flux distribution of a revolving magnetic field in the air gap between the stator and rotor. Thus, information of the instantaneous orientation and amplitude of the revolving magnetic field is required in a controller of the bearingless motor. Therefore, vector control methods are necessary for transient conditions. For control improvement of vector control, a PID controller can be used in horizontal and vertical force paths. Radial positions x and y are detected by displacement sensors.
[1] A. Chiba, and T. Fukao, (1998). " Optimal Design of Rotor Circuits in Induction type Bearingless Motors", IEEE Trans., on Magn., vol. 34, no. 4, pp. 2108-2110.
[2] T. Suzuki, A. Chiba, M. A. Rahman, and T. Fukao, (2000). "An Air-Gap-Flux-Oriented Vector Controller for Stable Operation of Bearingless Induction Motors", IEEE Trans., on Indus. Appl., vol. 36, no. 4, pp. 1069-1076.
[3] Y. He and H. Nian, (2003). “Analytical model and feedback control of the levitation force for an induction-type bearingless motor,” in Proceedings of the the 5th International Conference on Power Electronics and Drive Systems, pp. 242–246.
[4] T. Tera, Y. Yamauchi, A. Chiba, T. Fukao, and M. A. Rahman, (2006). " Performances of Bearingless and Sensorless Induction Motor Drive Based on Mutual Inductances and Rotor Displacements Estimation", IEEE Trans., on Indus., Elec., vol. 53, no. 1, pp. 187-194.
[5] T. Hiromi, T. Katou, A. Chiba, M. A. Rahman, and T. Fukao, (2007). " A Novel Magnetic Suspension-Force Compensation in Bearingless Induction-Motor Drive With Squirrel-Cage Rotor", IEEE Trans., on Indus. Appl., vol. 43, no. 1, pp. 66-76.
[6] S. Ueno, and Y. Okada, (2000). " Characteristics and Control of a Bidirectional Axial Gap Combined Motor–Bearing", IEEE/ASME Trans., on Mechatronics, vol. 5, no. 3, pp. 310-318.
[7] Z.-Q. Deng, X.-L. Wang, B. Li, L.-G. He, and Y.-G. Yan, (2003). “Study on independent control of the levitation subsystem of bearingless induction motors,” Proceedings of the Chinese Society of Electrical Engineering, vol. 23, no. 9, pp. 107–111.
[8] P. C. Loh, D. M. Vilathgamuwa, S. K. Tang, and H. L. Long, (2004). "Multilevel Dynamic Voltage Restorer", IEEE Power Elec., col. 2, no. 4, pp. 125-130.
[9] Y. Wang, Z.-Q. Deng, and X.-L.Wang, (2008). Direct torque control of bearingless induction motor,” Proceedings of the Chinese Society of Electrical Engineering, vol. 28, no. 21, pp. 80–84.
[10] T. Tera, Y. Yamauchi, A. Chiba, T. Fukao, and M. A. Rahman, (2006). " Performances of Bearingless and Sensorless Induction Motor
Drive Based on Mutual Inductances and Rotor Displacements Estimation", IEEE Trans., on Indus., Elec., vol. 53, no. 1, pp. 187-194.
[11] K. Asami, A. Chiba, M. A. Rahman, T. Hoshino, and A. Nakajima, (2005). " Stiffness Analysis of a Magnetically Suspended Bearingless Motor With Permanent Magnet Passive Positioning", IEEE Trans., on Magn., vol. 41, no. 10, pp. 3820-3822.
[12] [12] J. Amemiya, A. Chiba, D. G. Dorrell, and T. Fukao, (2005). " Basic Characteristics of a Consequent-Pole-Type Bearingless Motor", IEEE Trans., on Magn., vol. 41, no. 1, pp. 82-89.
[13] M. T. Bartholet, T. Nussbaumer, and J. W. Kolar, (2011). "Comparison of Voltage-Source Inverter Topologies for Two-Phase Bearingless Slice Motors", IEEE Trans., on Indus. Elec., vol. 58, no. 5, pp. 1921-1925.
[14] M. Nakagava, Y. Asano, A. Mizuguchi, A. Chiba, C. X. Xuan, M. Ooshima, M. Takemoto, T. Fukao, O. Ichigava, and D. G. Dorrell, (2006). "Optimization of Stator Design in a Consequent-Pole Type Bearingless Motor Considering Magnetic Suspension Characteristics", IEEE Trans., on Magn., vol. 42, no. 10, pp. 3422-3324.
[15] Chiba, D. Akamatsu, T. Fukao, M. A. Rahman, (2008). "An Improved Rotor Resistance Identification Method for Magnetic Field Regulation in Bearingless Induction Motor Drives", IEEE Trans., on Indus., Elec., vol. 55, no. 2, pp. 852-860.
[16] Chiba, T. Fukao, and M. A. Rahman, (2008). "Vibration Suppression of a Flexible Shaft With a Simplified Bearingless Induction Motor Drive", IEEE Trans., on Indus. Appl., vol. 44, no. 3, pp. 745-752.
[17] Laiho, A. Sinervo, J. Orivuori, K. Tammi, A. Arkkio, and K. Zenger, (2009). "Attenuation of Harmonic Rotor Vibration in a Cage Rotor Induction Machine by a Self-Bearing Force Actuator", IEEE Trans., on Magn., vol. 45, no. 12, pp. 5388-5398.
[18] A. Sinervo, and A. Arkkio, (2014). " Rotor Radial Position Control and its Effect on the Total Efficiency of a Bearingless Induction Motor With a Cage Rotor", IEEE Trans., on Magn., vol. 50, no. 4, pp. 1-9.
Naser Olad Abdollahi Aghdam : Using an appropriate controller for independent current control …
52
[19] X. Sun, L. Chen, Z. Yang, and H. Zhu, (2013). "Speed-Sensorless Vector Control of a Bearingless Induction Motor With Artificial Neural Network Inverse Speed Observer", IEEE/ASME Trans., on Mechatronics, vol. 18, no. 4, pp. 1357-1366.
[20] B. Wenshao, H. Shenghua, W. Shanming, and L. Wensheng, (2009). "General Analytical Models of Inductance Matrices of Four-Pole Bearingless Motors With Two-Pole Controlling Windings", IEEE Trans., on Magn., vol. 45, no. 9, pp. 3316-3321.
[21] E. F. Rodriguez, and J. A. Santisteban, (2011). "An Improved Control System for a Split Winding Bearingless Induction Motor", IEEE Trans., on Indus. Elec., vol. 58, no. 8, pp. 3401-3408.
[22] V. F. Victor, F. O. Quintaes, J. S. B. Lopes, L. D. S. Junior, A. S. Lock, and A. O. Salazar, (2012). "Analysis and Study of a Bearingless AC Motor Type Divided Winding, Based on a Conventional Squirrel Cage Induction Motor", IEEE Trans., on Magn., vol. 48, no. 11, pp. 3571-3574.
[23] A.S. Abdel-Khalik, S. Ahmed, and A. Massoud, (2014). "A bearingless coaxial magnetic gearbox", Alexanderia Engineering Journal, vol. 53, pp. 573-582.
[24] Golipour, Ahad. "Optimizing speed and angle control of stepping motor by using field oriented control." Journal of Artificial Intelligence in Electrical Engineering 3.11 (2014): 1-10.
[25] yaghobi, Saeideh, and sajad yaghobi. "Velocity Control of Electro Hydraulic Servo System by using a Feedback Error Learning Method." Journal of Artificial Intelligence in Electrical Engineering 3.11 (2014): 39-45.