طراحی و شبیهسازی مدارهای جمعکننده کممصرف با استفاده از گیت MGDI در فناوری QCA
الموضوعات :حمیدرضا صدر ارحامی 1 , سیدمحمدعلی زنجانی 2 , مهدی دولتشاهی 3 , بهرنگ برکتین 4
1 - دانشکده مهندسی کامپیوتر، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - دانشکده مهندسي برق، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ايران
3 - دانشکده مهندسي برق، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ايران
4 - دانشکده مهندسی کامپیوتر، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
الکلمات المفتاحية: آتاماتای سلولی کوانتومی, سامانههای کممصرف, تکنیک انتشار پایانه ورودی, تمام جمعکننده,
ملخص المقالة :
با طراحی مدارها در ابعاد نانو و مشاهده مشکلات فناوری CMOS، طراحان به دنبال جایگزین¬های مناسب برای این فناوری هستند. آتاماتای سلولی کوانتومی QCA، یکی از این فناوریهای پیشنهادی است که باتوجهبه سرعت بالا و توان مصرفی پایین، توجه محققان را به خود جلب کرده است. از طرفی، روش ورودی انتشار گیت GDI یک روش بهبود توان و مساحت اشغالی است که با استفاده از تعداد ترانزیستور کمتر، منجر بهسرعت بیشتر، اتلاف توان کمتر و كاهش پيچيدگي در توابع بولي شده است. همچنین جمعکننده بهعنوان مدار محاسباتی پایه در طراحی سامانههای دیجیتال از اهمیت ویژهای برخوردار است. در این مقاله، یک مدار نیم جمع¬کننده، یک مدار نیم تفریق¬کننده و سه مدار جمعکننده جدید در فناوری QCA و به کمک بلوک GDI بهبودیافته، طراحی شده است. شبیهسازی این مدارها با استفاده از نرمافزار QCADesigner و در فناوری 18 نانومتر مزیتهای استفاده همزمان از فناوری QCA و روش GDI بهصورت همزمان را نشان می¬دهد. نتایج حاصل از مقایسه و ارزیابی مدارهای پیشنهادی نسبت به بهترین جمعکننده موجود، بیانگر کاهش تا حدود 55% در مساحت اشغالی، کاهش محسوس تعداد سلولها و تأخیری برابر و یا کمتر تا 28% نسبت به کارهای موجود است.
[1] M. Sadeghi, K. Navi, and M. Dolatshahi, “Novel efficient full adder and full subtractor designs in quantum cellular automata,” J. Supercomput., vol. 76, no. 3, pp. 2191–2205, 2020, doi: 10.1007/s11227-019-03073-4.
[2] S. D. R., T. K., J. B. B. Rayappan, R. Amirtharajan, and P. Praveenkumar, “MUX induced Ring oscillators for encrypted Nano communication via Quantum Dot Cellular Automata,” Nano Commun. Netw., vol. 27, p. 100338, 2021, doi: 10.1016/j.nancom.2020.100338.
[3] A. Ghorbani, M. Dolatshahi, S. M. Zanjani, and B. Barekatain, “A New Low Power, Area Efficient 4-bit Carry Look Ahead Adder in CNFET Technology,” Majlesi J. Electr. Eng., vol. 16, no. 1, pp. 65–73, 2022, doi: 10.52547/mjee.16.1.65.
[4] A. Ghorbani, M. Dolatshahi, S. M. Zanjani, and B. Barekatain, “A new low-power Dynamic-GDI full adder in CNFET technology,” Integration, vol. 83, no. December 2020, pp. 46–59, 2022, doi: 10.1016/j.vlsi.2021.12.001.
[5] L. Dehbozorgi, R. Sabbaghi-Nadooshan, and A. Kashaninia, “Novel Fault-Tolerant Processing in Memory Cell in Ternary Quantum-Dot Cellular Automata,” J. Electron. Test. Theory Appl., vol. 38, no. 4, pp. 419–444, 2022, doi: 10.1007/s10836-022-06018-7.
[6] S. S. Ahmadpour and M. Mosleh, “A novel fault-tolerant multiplexer in quantum-dot cellular automata technology,” J. Supercomput., vol. 74, no. 9, pp. 4696–4716, 2018, doi: 10.1007/s11227-018-2464-9.
[7] W. Liu, L. Lu, M. O’Neill, and E. E. Swartzlander, “Design rules for Quantum-dot Cellular Automata,” Proc. - IEEE Int. Symp. Circuits Syst., pp. 2361–2364, 2011, doi: 10.1109/ISCAS.2011.5938077.
[8] E. Abiri, M. R. Salehi, and A. Darabi, “Design and evaluation of low power and high speed logic circuit based on the modified gate diffusion input (m-GDI) technique in 32nm CNTFET technology,” 22nd Iran.Conf. Electr. Eng. ICEE 2014, no. Icee, pp. 67–72, 2014, doi: 10.1109/IranianCEE.2014.6999505.
[9] M. Shoba and R. Nakkeeran, “GDI based full adders for energy efficient arithmetic applications,” Eng. Sci. Technol. an Int. J., vol. 19, no. 1, pp. 485–496, 2016, doi: 10.1016/j.jestch.2015.09.006.
[10] S. R. M. CHANDRA and R. P. RAMANA, “Design and Implementation of Low Power Alu Using 8T Full Adder With Finfets,” i-manager’s J. Circuits Syst., vol. 5, no. 4, p. 8, 2017, doi: 10.26634/jcir.5.4.13939.
[11] A. Morgenshtein, V. Yuzhaninov, A. Kovshilovsky, and A. Fish, “Full-swing gate diffusion input logic - Case-study of low-power CLA adder design,” Integr. VLSI J., 2014, doi: 10.1016/j.vlsi.2013.04.002.
[12] A. T. Mahani and P. Keshavarzian, “A novel energy-efficient and high speed full adder using CNTFET,” Microelectronics Journal, vol. 61. pp. 79–88, 2017. doi: 10.1016/j.mejo.2017.01.009.
[13] H. Arfavi, S. M. Riazi, and R. Hamzehyan, “Evaluation of Temperature, Disturbance and Noise Effect in Full Adders Based on GDI Method,” J. South. Commun. Eng., vol. 13, no. 50, pp. 47–66, 2023, doi: 10.30495/jce.2023.1973764.1197.
[14] H. Sadrarhami, S. M. Zanjani, M. Dolatshahi, B. Barekatain, and G. Scholar, “Innovation of a Novel Low-Power Modified-GDI QCA-Based Logic Circuit,” 2023, doi: 10.20944/preprints202311.1295.v1.
[15] P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” J. Appl. Phys., vol. 75, no. 3, pp. 1818–1825, 1994, doi: 10.1063/1.356375.
[16] S. Perri, F. Spagnolo, F. Frustaci, and P. Corsonello, “Multibit Full Comparator Logic in Quantum-Dot Cellular Automata,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 69, no. 11, pp. 4508–4512, 2022, doi: 10.1109/TCSII.2022.3193561.
[17] M. Sadeghi, K. Navi, and M. Dolatshahi, “A new quantum-dot cellular automata full-adder,” Proc. 2016 5th Int. Conf. Comput. Sci. Netw. Technol. ICCSNT 2016, vol. 41, no. 12, pp. 443–445, 2017, doi: 10.1109/ICCSNT.2016.8070197.
[18] I. Edrisi Arani and A. Rezai, “Novel circuit design of serial–parallel multiplier in quantum-dot cellular automata technology,” J. Comput. Electron., vol. 17, no. 4, pp. 1771–1779, 2018, doi: 10.1007/s10825-018-1220-y.
[19] S. R. Heikalabad, A. H. Navin, and M. Hosseinzadeh, “Content addressable memory cell in quantum-dot cellular automata,” Microelectron. Eng., vol. 163, pp. 140–150, 2016, doi: 10.1016/j.mee.2016.06.009.
[20] S. Angizi, S. Sarmadi, S. Sayedsalehi, and K. Navi, “Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata,” Microelectronics J., vol. 46, no. 1, pp. 43–51, 2015, doi: 10.1016/j.mejo.2014.10.003.
[21] H. Rashidi, A. Rezai, and S. Soltany, “High-performance multiplexer architecture for quantum-dot cellular automata,” J. Comput. Electron., vol. 15, no. 3, pp. 968–981, 2016, doi: 10.1007/s10825-016-0832-3.
[22] S. Bhanja, M. Ottavi, F. Lombardi, and S. Pontarelli, “Novel designs for thermally robust coplanar crossing in QCA,” in 2006 Design, Automation and Test in Europe, IEEE Computer Society, 2006, pp. 6-pp.
[23] S.-H. Shin, J.-C. Jeon, and K.-Y. Yoo, “Design of wire-crossing technique based on difference of cell state in quantum-dot cellular automata,” Int. J. Control Autom., vol. 7, no. 4, pp. 153–164, 2014.
[24] S. Hashemi, M. Rahimi Azghadi, and K. Navi, “Design and analysis of efficient QCA reversible adders,” J. Supercomput., vol. 75, no. 4, pp. 2106–2125, 2019, doi: 10.1007/s11227-018-2683-0.
[25] S. R. Fam and N. J. Navimipour, “Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata,” Photonic Netw. Commun., vol. 37, no. 1, pp. 120–130, 2019, doi: 10.1007/s11107-018-0801-9.
[26] G. Singh, R. K. Sarin, and B. Raj, “A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis,” J. Comput. Electron., vol. 15, no. 2, pp. 455–465, 2016, doi: 10.1007/s10825-016-0804-7.
[27] Y. Zhang, F. Deng, X. Cheng, and G. Xie, “A Coplanar XOR Using NAND-NOR-Inverter and Five-Input Majority Voter in Quantum-Dot Cellular Automata Technology,” Int. J. Theor. Phys., vol. 59, no. 2, pp. 484–501, 2020, doi: 10.1007/s10773-019-04343-w.
[28] N. Safoev and J. C. Jeon, “A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate,” Microelectron. Eng., vol. 222, p. 111197, 2020, doi: 10.1016/j.mee.2019.111197.
[29] K. Navi, S. Sayedsalehi, R. Farazkish, and M. R. Azghadi, “Five-input majority gate, a new device for quantum-dot cellular automata,” J. Comput. Theor. Nanosci., vol. 7, no. 8, pp. 1546–1553, 2010, doi: 10.1166/jctn.2010.1517.
[30] S. Angizi, E. Alkaldy, N. Bagherzadeh, and K. Navi, “Novel robust single layer wire crossing approach for Exclusive OR Sum of Products logic design with Quantum-dot Cellular Automata,” J. Low Power Electron., vol. 10, no. 2, pp. 259–271, 2014, doi: 10.1166/jolpe.2014.1320.
[31] M. Poorhosseini and A. R. Hejazi, “A Fault-Tolerant and Efficient XOR Structure for Modular Design of Complex QCA Circuits,” J. Circuits, Syst. Comput., vol. 27, no. 7, 2018, doi: 10.1142/S0218126618501153.
[32] L. Wang and G. Xie, “A Novel XOR/XNOR Structure for Modular Design of QCA Circuits,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 12, pp. 3327–3331, 2020, doi: 10.1109/TCSII.2020.2989496.
[33] S. R. Kassa, R. K. Nagaria, and R. Karthik, “Energy efficient neoteric design of a 3-input Majority Gate with its implementation and physical proof in Quantum dot Cellular Automata,” Nano Commun. Netw., vol. 15, pp. 28–40, 2018, doi: 10.1016/j.nancom.2018.02.001.
[34] S. Sayedsalehi, M. H. Moaiyeri, and K. Navi, “Novel efficient adder circuits for quantum-dot cellular automata,” J. Comput. Theor. Nanosci., vol. 8, no. 9, pp. 1769–1775, 2011, doi: 10.1166/jctn.2011.1881.
[35] L. Wang and G. Xie, “Novel designs of full adder in quantum-dot cellular automata technology,” J. Supercomput., vol. 74, no. 9, pp. 4798–4816, 2018, doi: 10.1007/s11227-018-2481-8.
[36] M. Mosleh, “A Novel Full Adder/Subtractor in Quantum-Dot Cellular Automata,” Int. J. Theor. Phys., vol. 58, no. 1, pp. 221–246, 2019, doi: 10.1007/s10773-018-3925-x.
[37] Y. Adelnia and A. Rezai, “A Novel Adder Circuit Design in Quantum-Dot Cellular Automata Technology,” Int. J. Theor. Phys., vol. 58, no. 1, pp. 184–200, 2019, doi: 10.1007/s10773-018-3922-0.
[38] N. Safoev and J. C. Jeon, “Design of high-performance QCA incrementer/decrementer circuit based on adder/subtractor methodology,” Microprocess. Microsyst., vol. 72, p. 102927, 2020, doi: 10.1016/j.micpro.2019.102927.
[39] J. Maharaj and S. Muthurathinam, “Effective RCA design using quantum dot cellular automata,” Microprocess. Microsyst., vol. 73, p. 102964, 2020, doi: 10.1016/j.micpro.2019.102964.
[40] H. R. Roshany and A. Rezai, “Novel Efficient Circuit Design for Multilayer QCA RCA,” Int. J. Theor. Phys., vol. 58, no. 6, pp. 1745–1757, 2019, doi: 10.1007/s10773-019-04069-9.
[41] U. B. Joy, S. Chakraborty, S. Tasnim, M. S. Hossain, A. H. Siddique, and M. Hasan, “Design of an Area Efficient Quantum Dot Cellular Automata Based Full Adder Cell Having Low Latency,” Int. Conf. Robot. Electr. Signal Process. Tech., pp. 689–693, 2021, doi: 10.1109/ICREST51555.2021.9331135.