بررسی اثرات کاربری اراضی و شکل زمین بر دمای سطح زمین (مطالعه موردی: شهر بجنورد، استان خراسان شمالی)
الموضوعات :زهرا پرور 1 , مرجان محمدزاده 2 , سپیده سعیدی 3
1 - دانشجوی دکتری علوم و مهندسی محیطزیست، دانشکده شیلات و محیطزیست دانشگاه علوم کشاورزی و منابع طبیعی گرگان،
2 - دانشکده شیلات و محیطزیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران
3 - دانشکده شیلات و محیطزیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران
الکلمات المفتاحية: شهر بجنورد, لندست 8, دمای سطح زمین, الگوریتم پنجره مجزا,
ملخص المقالة :
چکیده شهرنشینی با تغییر شکل طبیعی زمین میتواند دمای سطح زمین (LST) را در مقیاس جهانی تحت تأثیر قرار دهد. کاهش پیامدهای تغییرات اقلیمی، مستلزم تدوین یک برنامه منسجم مدیریت کاربری برای محدود نمودن گسترش بیبرنامه و افزایش فضای سبز شهری است. هدف این مطالعه بررسی چگونگی تأثیر ویژگیها و الگوی فضایی مناطق شهری و محیط اطراف آن بر دمای سطح زمین در شهر بجنورد است. برای این منظور، از الگوریتم پنجره مجزا (SWA) برای بازیابی دمای سطح زمین با استفاده از دادههای لندست 8 سال 2021 استفاده شد. بر اساس نتایج، مراکز اصلی انتشار گرمای بالا در مناطق شهری مانند تأسیسات عمومی، پارکینگ خودروها و مناطق صنعتی، دمای سطح زمین بالاتری (بیش از 38 درجه سانتیگراد) نسبت به فضاهای سبز شهری (کمتر از 36 درجه سانتیگراد) دارند. در این مطالعه تفاوت بین دمای سطح زمین در روز و شب با استفاده از دمای شبانه سطح زمین مادیس آشکار شد. همچنین نتایج خودهمبستگی فضایی تضاد در رفتارهای دمای سطح زمین بافت شهری و حومه شهر در مناطق نیمهخشک را نشان می دهد. وجود نقاط گرم در سطوح نفوذپذیر مانند زمینهای کشاورزی و نقاط سرد در مناطق غیرقابل نفوذ نشان دهنده اثر معکوس جزایر حرارتی شهری در این مناطق است. درک تعاملات پیچیده کاربریهای شهری و دمای سطح زمین با در نظر گرفتن الگوهای آب و هوای منطقهای میتواند به مدیران و برنامه ریزان شهری در بهبود کیفیت زندگی در مناطق شهری کمک کند.
1. Almeida, C.R., Teodoro, A.C. and Gonçalves, A. (2021). Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments, 8(10), doi 10.3390/environments8100105.
2. Amiri, F. and Tabatabaie, T. (2022). The effect of land use change/land cover on land surface temperature in the coastal area of Bushehr. Journal of RS and GIS for Natural Resources, 13(2): 130-147, doi 10.30495/girs.2022.692349. (In Persian).
3. Amiri, R., Weng, Q., Alimohammadi, A. and Alavipanah, S.K. (2009). Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 113(12): 2606-2617, doi https://doi.org/10.1016/j.rse.2009.07.021.
4. Asgarian, A., Amiri, B.J. and Sakieh, Y. (2015). Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosystems, 18(1): 209-222, doi 10.1007/s11252-014-0387-7.
5. Avdan, U. and Jovanovska, G. (2016). Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. Journal of Sensors, 2016: 1480307, doi 10.1155/2016/1480307.
6. Azmi, R., Tekouabou Koumetio, C.S., Diop, E.B. and Chenal, J. (2021). Exploring the relationship between urban form and land surface temperature (LST) in a semi-arid region case study of Ben Guerir city - Morocco. Environmental Challenges, 5: 100229, doi https://doi.org/10.1016/j.envc.2021.100229.
7. Bendib, A., Dridi, H. and Kalla, M.I. (2017). Contribution of Landsat 8 data for the estimation of land surface temperature in Batna city, Eastern Algeria. Geocarto International, 32(5): 503-513, doi 10.1080/10106049.2016.1156167.
8. Bogoliubova, A. and Tymków, P. (2014). Accuracy assessment of automatic image processing for land cover classification of St. Petersburg protected area. Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum, 13(1-2): 5-22.
9. Faisal, A.-A., Kafy, A.-A., Al Rakib, A., Akter, K.S., Jahir, D.M.A., Sikdar, M.S., Ashrafi, T.J., Mallik, S. and Rahman, M.M. (2021). Assessing and predicting land use/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area. Environmental Challenges, 4: 100192, doi https://doi.org/10.1016/j.envc.2021.100192.
10. Fattah, M.A., Morshed, S.R. and Morshed, S.Y. (2021). Impacts of land use-based carbon emission pattern on surface temperature dynamics: Experience from the urban and suburban areas of Khulna, Bangladesh. Remote Sensing Applications: Society and Environment, 22: 100508, doi https://doi.org/10.1016/j.rsase.2021.100508.
11. Firozjaei, M.K., Fathololoumi, S., Kiavarz, M., Arsanjani, J.J. and Alavipanah, S.K. (2020). Modelling surface heat island intensity according to differences of biophysical characteristics: A case study of Amol city, Iran. Ecological Indicators, 109: 105816, doi https://doi.org/10.1016/j.ecolind.2019.105816.
12. Guo, A., Yang, J., Sun, W., Xiao, X., Xia Cecilia, J., Jin, C. and Li, X. (2020). Impact of urban morphology and landscape characteristics on spatiotemporal heterogeneity of land surface temperature. Sustainable Cities and Society, 63: 102443, doi https://doi.org/10.1016/j.scs.2020.102443.
13. Guo, G., Wu, Z., Cao, Z., Chen, Y. and Yang, Z. (2020). A multilevel statistical technique to identify the dominant landscape metrics of greenspace for determining land surface temperature. Sustainable Cities and Society, 61: 102263, doi https://doi.org/10.1016/j.scs.2020.102263.
14. Haashemi, S., Weng, Q., Darvishi, A. and Alavipanah, S.K. 2016. Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City. Remote Sensing, 8(4). Retrieved from.
15. Ibsen, P.C., Jenerette, G.D., Dell, T., Bagstad, K.J. and Diffendorfer, J.E. (2022). Urban landcover differentially drives day and nighttime air temperature across a semi-arid city. Science of The Total Environment, 829: 154589, doi https://doi.org/10.1016/j.scitotenv.2022.154589.
16. Jimenez-Munoz, J. and Sobrino, J.A. (2008). Split-Window Coefficients for Land Surface Temperature Retrieval From Low-Resolution Thermal Infrared Sensors. IEEE Geoscience and Remote Sensing Letters, 5(4): 806-809, doi 10.1109/LGRS.2008.2001636.
17. Kashki, A., Karami, M., Zandi, R. and Roki, Z. (2021). Evaluation of the effect of geographical parameters on the formation of the land surface temperature by applying OLS and GWR, A case study Shiraz City, Iran. Urban Climate, 37: 100832, doi https://doi.org/10.1016/j.uclim.2021.100832.
18. Kumari, M., Sarma, K. and Sharma, R. (2019). Using Moran's I and GIS to study the spatial pattern of land surface temperature in relation to land use/cover around a thermal power plant in Singrauli district, Madhya Pradesh, India. Remote Sensing Applications: Society and Environment, 15: 100239, doi https://doi.org/10.1016/j.rsase.2019.100239.
19. Lazzarini, M., Marpu, P.R. and Ghedira, H. (2013). Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas. Remote Sensing of Environment, 130: 136-152, doi https://doi.org/10.1016/j.rse.2012.11.007.
20. Li, J., Wu, H. and Li, Z.-L. (2020). An optimal sampling method for multi-temporal land surface temperature validation over heterogeneous surfaces. ISPRS Journal of Photogrammetry and Remote Sensing, 169: 29-43, doi https://doi.org/10.1016/j.isprsjprs.2020.08.024.
21. Liu, L. and Zhang, Y. (2011). Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. Remote Sensing, 3(7), doi 10.3390/rs3071535.
22. Logan, T.M., Zaitchik, B., Guikema, S. and Nisbet, A. (2020). Night and day: The influence and relative importance of urban characteristics on remotely sensed land surface temperature. Remote Sensing of Environment, 247: 111861, doi https://doi.org/10.1016/j.rse.2020.111861.
23. Maleki, M., Ahmadi, Z. and Dosti, R. (2019). Kermanshah Land surface temperature changes in during 1393-1397 periods. Geography and Human Relationships, 2(3): 309-319.
24. Mansourmoghaddam, M., Rousta, I., Zamani, M., Mokhtari, M.H., Karimi Firozjaei, M. and Alavipanah, S.K. (2021). Study and prediction of land surface temperature changes of Yazd city: assessing the proximity and changes of land cover. Journal of RS and GIS for Natural Resources, 12(4): 1-27. (In Persian).
25. Maryanaji, Z., Darvishi, M. and Abbasi, H. (2018). Application of Statistical Models and Satellite Imagery in the Evolution of Heat Island in Hamedan City. [ ]. Geographical-Researches, 33(3): 124-136, doi 10.29252/geores.33.3.124. (In Persian).
26. Naim, M.N.H. and Kafy, A.-A. (2021). Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in Chattogram city: A remote sensing and statistical approach. Environmental Challenges, 4: 100107, doi https://doi.org/10.1016/j.envc.2021.100107.
27. Nasehi, S., Yavari, A. and Salehi, E. (2022). The Investigation of the Relationship between Urban Morphology Changes and Land Surface Temperature for Urban Heat Island Management (A Case Study: Tehran). Geography and Environmental Sustainability, 12(3): 107-130, doi 10.22126/ges.2022.7625.2517.
28. Nimish, G., Bharath, H.A. and Lalitha, A. (2020). Exploring temperature indices by deriving relationship between land surface temperature and urban landscape. Remote Sensing Applications: Society and Environment, 18: 100299, doi https://doi.org/10.1016/j.rsase.2020.100299.
29. Osborne, P.E. and Alvares-Sanches, T. (2019). Quantifying how landscape composition and configuration affect urban land surface temperatures using machine learning and neutral landscapes. Computers, Environment and Urban Systems, 76: 80-90, doi https://doi.org/10.1016/j.compenvurbsys.2019.04.003.
30. Parvar, Z. and Shayesteh, K. (2017). Monitoring and Prediction of Urban Growth Using Multitemporal Images and GIS Techniques (A Case Study of Bojnourd City). Journal of Environmental Studies, 43(3): 513-527, doi 10.22059/jes.2017.225385.1007382. . (In Persian).
31. Rezaei, M., Ghasemieh, H. and Abdollahi, K. (2020). Utility of METRIC model for estimating actual monthly evapotranspiration of Vanak Basin using MODIS sensor images. Journal of RS and GIS for Natural Resources, 11(3): 40-61. (In Persian).
32. Rongali, G., Keshari, A.K., Gosain, A.K. and Khosa, R. (2018). Split-Window Algorithm for Retrieval of Land Surface Temperature Using Landsat 8 Thermal Infrared Data. Journal of Geovisualization and Spatial Analysis, 2(2): 14, doi 10.1007/s41651-018-0021-y.
33. Sekertekin, A. and Bonafoni, S. (2020). Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sensing, 12(2), doi 10.3390/rs12020294.
34. Soydan, O. (2020). Effects of landscape composition and patterns on land surface temperature: Urban heat island case study for Nigde, Turkey. Urban Climate, 34: 100688, doi https://doi.org/10.1016/j.uclim.2020.100688.
35. Valizadeh Kamran, K., Gholamnia, K., Eynali, G. and Moosavi, M. (2017). Estimation land surface temperature and extract heat islands using split window algorithm and multivariate regression analysis (Case Study of Zanjan). JUPM, 8(30): 35-50. . (In Persian).