نقش توزیع مکانی واحدهای هیدرولوژیکی حوضه بر تغییرات دبی اوج سیلاب با استفاده از مدل هیدرولوژیکیHEC-HMS (مطالعه موردی: حوضه آبخیز صفارود)
الموضوعات : Applications in water resources managementمرتضی شاهدی 1 , غلامرضا نبی بیدهندی 2
1 - پژوهشگاه مهندسی بحران طبیعی
2 - استاد گروه مهندسی محیط زیست، دانشکده محیط زیست، دانشگاه تهران، تهران، ایرانان
الکلمات المفتاحية: حوضه آبخیز صفارود, بهینهسازی عملیات, کنترل سیل, آبخیزداری, مدل HEC-HMS,
ملخص المقالة :
با توجه به تغییرات عمده در کاربری زمین و همچنین تغییرات اقلیمی طی چند دهه اخیر مدیریت سیلاب از نقش عمده ای در مدیریت منابع آب برخوردار است. هدف اصلی تحقیق حاضر بررسی نقش توزیع مکانی واحدهای هیدرولوژیکی حوضه آبخیز صفارود بر تغییرات دبی اوج سیلاب با استفاده از مدل هیدرولوژیکیHEC-HMS میباشد. برای این منظور ابتدا توزیع مکانی زیرحوضهها با استفاده از نقشه سطوح همپیمایش در سطح منطقه تعیین گردید. سپس با استفاده از نقشه سیلخیزی و مدل هیدرولوژیکی HEC-HMS، رفتار زیرحوضههای واقع در هر سطح هم پیمایش براساس سیلاب طراحی با دوره بازگشت صد ساله مورد بررسی قرار گرفت. با حذف اثر هیدرولوژیکی زیرحوضههای یاد شده در هر سطح همپیمایش، هیدروگراف سیلاب خروجی شبیهسازی گردید. بررسی نتایج نشان میدهد زیرحوضه های سطح هم پیمایش 1 و 2 واقع در خروجی حوضه صفارود با شاخص 67/0 و 78/0 دارای کمترین تاثیر و در مقابل زیرحوضه های واقع در سطح 4 با شاخص 10/1 دارای بیشترین تاثیر بر دبی اوج سیلاب خروجی از حوضه میباشند. میزان تغییرات ایجاد شده در ناحیه میانی و مناطق بالاتر، ناشی از شکل حوضه در تلفیق با شدت سیلخیزی میباشد. با توجه به نتایج ذکر شده توصیه میگردد جهت کاهش هزینه های اجرایی کنترل سیلاب در حوضه آبخیز صفارود تمرکز عملیات اجرایی در مناطق اولویتبندی شده شامل زیرحوضه های بالاتر و همچنین میانی قرار گیرد.
1. Abbaspour K. C. 2007. User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs. Eawag: Swiss Fed. Inst. Aquat. Sci. Technol. Du¨bendorf, Switzerland.
2. AgaKhani, Mahsa, Nasrabadi, Touraj, Vafainejad, Alireza. 2019. Hydrological simulation of Taleghan watershed using SWAT model. Journal of Environmental Science and Technology, 21 (9), 147-159. doi: 10.22034 / jest.2020.26325.3576)in Persian)
3. Arnold, J. G., and N. Fohrer. 2005. SWAT2000: Current capabilities and research opportunities in applied watershed modeling. Hydrol. Proc. 19(3): 563-572.
4. Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R. 1998. Large area hydrologic modeling and assessment, part I: model development. J. Amer. Water Resour. Assoc. 34:1. 73-89.
5. Baharvand, Siamak, Souri, Salman, Rahnmarad, Jafar. 2018. Zoning of environmental hazards of landslides, earthquakes, floods and erosion using fuzzy hierarchical method (Case study: Wark area). Remote Sensing and Geographic Information System in Natural Resources, 8 (3), 89-103.
6. Gassman, P. W., M. Reyes, C. H. Green, and J. G. Arnold. 2007. The Soil and Water Assessment Tool: Historical development, applications, and future directions. Trans. ASABE 50(4): 1211- 1250.
7. Gholami, A., and Shahedi, K., and Habib Nejadroshan, M., and Wafakhah, M., and Soleimani, K. 2018. Evaluation of the efficiency of the SWAT semi-distributed model in river flow simulation (Case study of the Talar watershed in Mazandaran province). Iranian Soil and Water Research (Iranian Agricultural Sciences), 48 (3), 463-476. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=309915)in Persian)
8. Habibi, A., and Goodarzi, M. 2018. Application of SWAT semi-distributed model in simulation of Hablehroud watershed runoff. Iranian Journal of Watershed Management Science and Engineering, 12 (43), 40-49. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=465476)in Persian)
9. Hosseini-Teshnizi, S.Z. et. al, 2020, The Watershed Structures in Controlling Runoff - Case Study of Sardasht Basin in IRAN, American Journal of Engineering and Applied Sciences 2020, 13 (1): 72.95 DOI: 10.3844/ajeassp.2020.72.95)in Persian)
10. J. G. Arnold, D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White, R. Srinivasan, C. Santhi, R. D. Harmel, A. van Griensven, M. W. Van Liew, N. Kannan, M. K. Jha, 2012, SWAT: MODEL USE, CALIBRATION, AND VALIDATION, Vol. 55(4): 1491-1508 2012 American Society of Agricultural and Biological Engineers ISSN 2151-0032
11. Kabeja, C. et. al, 2020, The Impact of Reforestation Induced Land Cover Change (1990–2017) on Flood Peak Discharge Using HEC-HMS Hydrological Model and Satellite Observations: A Study in Two Mountain Basins, China, Water 2020, 12, 1347; doi:10.3390/w12051347
12. Karimizadeh, K. et. al, 2019, Technical evaluation of watershed management operations effects on river discharge - Case study: Sira-Kalvan watershed, Iran, Water Utility Journal 23: 49-60, 2019. )in Persian)
13. Kovalenko, S. et. al, 2021, An examination of extreme floods, effects on landuse change and seasonality in the Lower St. Johns River Basin, Florida using HSPF and statistical methods, Research Square, DOI: https://doi.org/10.21203/rs.3.rs-354253/v1
14. Krysanova, V., and J. G. Arnold. 2008. Advances in ecohydrological modeling with SWAT: A review. Hydrol. Sci. J. 53(5): 939-947.
15. Lagacherie, P., Rabotin, M., Colin, F., Moussa, R., Voltz, M, 2010. Geo-MHYDAS: A landscape discretization tool for distributed hydrological modeling of cultivated areas . Computers & Geosciences, 36, 1021-1032.
16. Malunjkar,V.S. Shinde, M.G., Ghotekar ,S.S., Atre, A.A., 2015. Estimation of
17. Mansour Moghaddam, Mohammad, Rusta, Iman, Zamani, Mohammad Sadegh, Mokhtari, Mohammad Hossein, Karimi Firoozjaei, Mohammad, Alavi Panah, Seyed Kazem. 2022. Study and prediction of land surface temperature changes in Yazd: Investigating the effect of proximity and land cover changes. Remote Sensing and Geographic Information System in Natural Resources, 12 (4), 1-27. )in Persian)
18. Mendenhall W., Reinmuth J.E., Beaver R. 1989. Statistics for Management and Economics. P.700-701.
19. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., King, K.W., Williams, J.R. 2005. Soil and Water Assessment Tool (SWAT) Theoretical Documentation. Blackland Research Center, Texas Agricultural Experiment Station, Temple, Texas (BRC Report02-05).
20. Nguyen, T. et. al, 2020, Assessing climate change impacts on extreme rainfall and severe flooding during the summer monsoon season in the Ishikari River basin, Japan, Hydrological Research Letters 14(4), 155–161 (2020) Published online in J-STAGE (www.jstage.jst.go.jp/browse/hrl). DOI: 10.3178/hrl.14.155.
21. Rahimpour M 2015 Trends assessment of changes in water budget components and land use of Lake Urmia (Iran) and Lake Van (Turkey) basins using remote sensed data. Tarbiat Moodares University (In Persian)
22. science, 3, 55-69
23. Shahoui, Seyed Vahid, Parhamat, Jahangir. 2019. Evaluation and comparison of two integrated AWBM and semi-distributed SWAT models in simulating the monthly runoff of Qarasu River in Kermanshah province. Environment and Water Engineering, 5 (1), 71-82. doi: 10.22034 / jewe.2019.143387.1275)in Persian).
24. surface Runoff using swat model, international journal of inventive Engineering and
25. Tudose, N.C.; Marin, M.; Cheval, S.; Ungurean, C.; Davidescu, S.O.; Tudose, O.N.; Mihalache, A.L.; Davidescu, 2021A.A. SWAT Model Adaptability to a Small Mountainous Forested Watershed in Central Romania. Forests, 12, 860. https://doi.org/10.3390/f12070860
26. Wang, G.Q., J.Y. Zhang, 2015, Variation of water resources in the Huang- huai-hai areas and adaptive strategies to climate change, Quaternary International, Volumes 380–381, 4, Pages 180-186.
