مقایسه برآورد کربن آلی خاک با استفاده از طیفسنجی فروسرخ نزدیک و تصاویر ماهوارهای در کاربریهای کشاورزی و جنگل در منطقه گیان، استان همدان
الموضوعات :سهیلاسادات هاشمی 1 , پری ناز عبدلی 2
1 - هیات علمی/ دانشگاه ملایر
2 - کارشناسی ارشد
الکلمات المفتاحية: فروسرخ نزدیک, باند 7, سنجش از دور, تغییر کاربری,
ملخص المقالة :
در این مطالعه ارتباط بین انعکاس طیفی کربن آلی خاک از ماهوارهای لندست 8 و طیفسنجی فروسرخ، در 48 نمونه خاک در کاربریهای کشاورزی و جنگل بکر در دشت گیان نهاوند، استان همدان، مورد بررسی قرار گرفت. نمونههای خاک از عمق 0 تا 30 سانتیمتری بهطور تصادفی جمعآوری شدند. آنالیز همبستگی بین باندهای اصلی، باندهای ترکیبی، شاخصهای گیاهی و ترکیب شاخصها با میزان کربن آلی خاک انجام گرفت. همچنین آنالیز طیفی خاک با کمک دستگاه طیفسنج در طول موج 350 تا 2500 نانومتر انجام شد. پس از ثبت طیفها پیشپردازش آنها مورد ارزیابی قرار گرفت. نتایج نشان داد که در روش سنجش از دور تنها باند 11، با میزان کربن آلی خاک در اراضی کشاورزی همبستگی مثبت معنیداری در سطح 5 درصد دارد. همچنین نسبت باند 7 به باند 8، همبستگی مثبت معنیداری با کربن آلی خاک در سطح 1 درصد داشت. سه شاخص گیاهی NDVI، DVI و RAI، با کربن آلی خاک در سطح 5 درصد همبستگی معنیداری نشان دادند. همبستگی بین کربن آلی محاسبه شده در آزمایشگاه با تصاویر ماهوارهای در کاربری کشاورزی برابر 36/0 R2 = بود. در حالیکه همبستگی کربن آلی با تصاویر ماهوارهای برای کل نقاط مورد مطالعه برابر 32/0 R2= بدست آمد. در روش طیفسنجی بالاترین همبستگی در طول موجهای 1404، 1907 و 2216 نانومتری مشاهده شد. در بین مدلهای برازش داده شده به کمک رگرسیون چندتایی، مدل گام به گام بهترین مدل برای تخمین کربن آلی پیشنهاد شد. بهطور کلی اگر تعداد نمونهها خیلی کم باشد، روش آزمایشگاهی مناسب بوده، اما اگر نمونهها زیاد باشد، روش طیفسنجی برای صرف زمان و هزینه مناسب است. در ایران بدلیل قیمت بالای روش طیفسنجی، روش سنجش از دور برای تخمین پیشنهاد میگردد.
1. Abbas Nejad B, Khajedin SJ. 2014. Effect of urban reforestation on carbon sequestration in arid soils using remote sensing technology. Journal of RS and GIS for Natural Resources, 5(2): 75-88. (In Persian)
2. Askari MS, Rourke SM, Holden NL. 2015. Evaluation of soil quality for agricultural production using Visible Near Infrared spectroscopy. Geoderma, 243(244): 80-91. http://dx.doi. 10.1016/j.geoderma.2014.12.012.
3. Babaeean E, Jalali VR. 2016. Estimating soil organic carbon using hyperspectral data in visible, near-infrared and shortwave-infrared (VIS-NIR-SWIR) range. Journal of Soil Management and Sustainable Production, 6(2): 65-82. https://doi.10.22069/ejsms.2016.3143. (In Persian)
4. Banaei MH. 1998. Soil moisture and temperature regimes map of Iran. Soil and Water Research institute of Iran. (In Persian)
5. Bangelesa F, Adam E, Knight J, Dhau I, Ramudzuli Mand Mokotjomela TM. 2020. Predicting soil organic carbon content using hyperspectral remote sensing in a degraded mountain landscape in Lesotho. Applied and Environmental Soil Science, 2158573. https://doi.org/10.1155/2020/2158573.
6. Ben-Dor E, Banin A. 1995. Near infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society American Journal, 59: 364-372. https://doi.org/10.1155/2020/2158573.
7. Cozzolino D, Moron A. 2003. The potential of near infrared reflectance spectroscopy to analyze soil chemical and physical characteristics. Journal Agricultural Science, 140: 65-71. https://doi.org/10.1017/S0021859602002836.
8. Esbensen, KH. 2006. Multivariate Data Analysis. CAMO Software AS. 589 Pp.
9. Fatemi SB, Rezaei Y. 2013. Introduction to remote sensing. Buali Sina University press, Hamadan.
10. Hassani A, Bahrami HA, Noroozi AA, Ostan Sh. 2014. Visible-near infrared reflectance spectroscopy for assessment of soil properties in gypseous and calcareous soils. Watershed Engineering and Management, 6(2): 140-154. https://doi.10.22092/ijwmse.2014.101721.
11. Henderson TL, Baumgardner MF, Franzmeier DP, Stott DE, Coster DC. 1992. High dimensional reflectance analysis of soil organic matter. Soil Science Society of America Journal, 56(3): 865-872.
12. Hunt GR. 1980. Spectroscopy properties of rock and minerals. In: C.R. Stewart (ed), Handbook of Physical Properties of Rocks. CRC Press Inc, Florida, 259 pages.
13. Khayamim F, Wetterlind J, Khademi H, Stenberg B. 2015. Using visible and near infrared spectroscopy to estimate carbonates and gypsum in soils in arid and sub humid regions of Isfahan, Iran. Journal of Near Infrared Spectroscopy, 23: 155-165. https://doi.org/10.1255/jnirs.1157.
14. Kuang B, Mouazen AM. 2012. Influence of the number of samples on prediction error of visible and near infrared spectroscopy of selected soil properties at the farm scale. Journal Soil Science, 63(3): 421-429. https://doi.org/10.1111/j.1365-2389.2012.01456.x.
15. Kunkel VR, Wells T, Hancock GR. 2022. Modelling soil organic carbon using vegetation indices across large catchments in eastern Australia. Science of The Total Environment, 817, 152690. https://doi.org/10.1016/j.scitotenv.2021.152690
16. Miloš M, Bensab A. 2017. Prediction of soil organic carbon using VIS-NIR spectroscopy: Application to Red Mediterranean soils from Croatia. Eurasian Journal Soil Science, 6 (4): 365-373. https://doi. 10.18393/ejss.319208.
17. Mulders MA. 1987. Remote sensing in soil science. Wageningen: Elsevier.
18. Poormohamadi S, Ekhtesasi MR, Rahimian, MH. 2015. The reorganization and separation of calcite colluvium from non-calcite structure by using remote sensing and lithological characteristics combination (case study: Bhadoran area in Yazad province). Geology Engineering journal, 4: 33-45. https://doi.10.18869/acadpub.jeg.9.4.3113.
19. Rahmani N, Shahedi K, Miryaghobzadeh MH. 2011. Evaluation of vegetation indices using in remote sensing (case study: Herysk catchment). 24 th geomatics congress. Soil Survey institute. Tehran.
20. Ray SS, Singh JP, Dasa G, Panigrahy S. 2004. Use of high resolution remote sensing data for generating site specific soil management plan. Proceedings of the International Society for Photogrammetry and Remote Sensing congress, Istanbul, Turkey.
21. Saati Zarei S, Attaeian B. 2021. Investigation of firing effect in rangelands on soil organic carbon changes using remotely sensed based indices. Journal of RS and GIS for Natural Resources, 12(3): 82-100. http://dorl.net/dor / 20.1001.1.26767082.1400.12.1.1.2. (In Persian)
22. Stenberg B, Rossel RAV, Mouazen AN, Wetterlind G. 2010. Visible and near infrared spectroscopy in soil science. Advance in Agronomy, 107: 163-215.
23. Tsakiridis NL, Keramaris KD, Theocharis JB, Zalidis GC. 2020. Simultaneous prediction of soil properties from VNIR-SWIR spectra using a localized multi-channel 1-D convolutional neural network. Geoderma, 114208. https://doi.org/10.1016/j.
24. Walkley AJ, Black IA. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-38.
25. Wang X, Zhangb Y, Atkinsonc MP, Yao H. 2020. Predicting soil organic carbon content in Spain by combining Landsat TM and ALOS PALSAR images. Int J Appl Earth Obs Geoinformation, 92: 102182. https://doi.org/10.1016/j.jag.
26. Wetterlind J, Stenberg B, Raphael A, Rossel V. 2013. Soil analysis using visible and near infrared spectroscopy. Plant Mineral Nutrients, 953: 95-107. doi:10.1007/978-1-62703-152-3-6.
27. Xu L, Hong Y, Wei Y, Guo L, Shi T, Liu Y, Jiang Q, Fei S, Liu Y, Mouazen AM, Chen Y. 2020. Estimation of organic carbon in anthropogenic soil by VIS-NIR spectroscopy: Effect of variable selection. Remote Sensing, 12, 3394. doi:10.3390/rs12203394.
28. Žížala D, Minarˇík R, Zádorová T. 2019. Soil organic carbon mapping using multispectral remote sensing data: prediction ability of data with different spatial and spectral resolutions. Remote Sensing, 11, 2947; doi:10.3390/rs11242947.