پایش میزان کلروفیل-آ، کربن آلی، شوری و دمای سطح آب در سواحل سیستان و بلوچستان با استفاده از داده های سنجش از دور
الموضوعات :الهام شهری 1 , محمد حسین صیادی 2 , الهام یوسفی 3
1 - دانشجوی دکتری علوم و مهندسی محیطزیست، دانشکده منابع طبیعی و محیطزیست، دانشگاه بیرجند، ایران
2 - گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست ، دانشگاه بیرجند، ، ایران
3 - استادیار گروه محیطزیست، دانشکده منابع طبیعی و محیطزیست، دانشگاه بیرجند، بیرجند، ایران
الکلمات المفتاحية: مودیس, گوگل ارث انجین, دریای عمان, تصاویر ماهوارهای,
ملخص المقالة :
پیشینه و هدف دریاها و اقیانوس ها نقش به سزایی در شرایط آب و هوایی و همچنین تغییرات اقلیم ایفا می کنند. علاوه بر این پدیده های فیزیکی و زیستی از مهم ترین عوامل تأثیرگذار بر شیمی و محیط زیست دریا هستند. از همین رو شناخت فرآیندهای فیزیکی حاکم بر دریاها و اقیانوس ها و همچنین همبستگی بین این خصوصیات با خصوصیات زیستی از اهمیت بالایی برخوردار است. الگوریتم های سنجش از دور از محـدوده آبی، سبز، زرد، قرمز و مادون قرمز نزدیک استفاده می کنند و بنابراین نظارت بر کلروفیل- آ که رنگدانه فیتوپلانگتون آب های اقیانوسی و ساحلی است می تواند با استفاده از فناوری نوین سنجش از دور اندازهگیری و ارزیابی شود.مواد و روش ها در این مطالعه از قابلیت روش های سنجش از دور در بررسی وضعیت ویژگیهای کیفی آبهای ساحلی استان سیستان و بلوچستان استفادهشده است. بدین منظور برای بررسی وضعیت کلروفیل-آ با استفاده از الگوریتم های بیواپتیکی OC3 درENVI و همچنین قابلیت های پلت فرم گوگل ارث انجین استفاده شده است. گوگل ارث انجین یک پلت فرم تحلیل مکانی و متن باز است که کاربران را قادر می سازد تصاویر ماهواره ای سیاره زمین را تجسم و تجزیه و تحلیل کنند. با استفاده از این سامانه می توان انواع پردازش های طیفی را بر روی پدیده های مختلف سطح زمین با دادههای ماهواره ای متفاوت انجام داد. همچنین می توان بر روی حجم زیادی از داده ها بدون نیاز به سامانه های پرقدرت، محاسبات را انجام داد. پارامتر شوری از ماهواره SMOS سنجنده MIRAS در نرمافزار SNAP، بررسی پارامترهای کلروفیل، دما و کربن آلی با استفاده از تصاویر ماهواره مودیس سنجنده Terra استفاده شد. زمان مطالعه در تصاویر مورداستفاده و نمونه برداری میدانی اردیبهشت ماه سال 1399 است. به منظور استخراج غلظـت کلروفیـل-آ از الگوریتم های بیواپتیکی مبتنـی بـر بانـدهای آبـی و سـبز (OC3) در نرمافزار ENVI استفاده شد. مدل های بیواپتیک اندازهگیری های نـوری بازتـاب یـا تابش را با پارامترهای بیولوژیکی مانند غلظت کلروفیل، کیفیت آب و سایر موارد به هم پیونـد میدهند. دمای آب یکی از مهمترین عوامل حاکم بر وضعیت زندگی درون دریا است، به طوری که جانوران دریایی تنها در یک بازه مشخصی از دمای آب می توانند زنده بمانند و تولیدمثل کنند. به همین دلیل فیتوپلانگتون ها بسیار به تغییرات دمای آب حساس بوده و واکنش نشان می دهند و دمای سطح آب می تواند تعیینکننده فراوانی و پراکنش آن ها باشد. در این پژوهش پروداکت MIR_OSUDP2 ماهواره SMOS سنجنده MIRAS در تاریخ 3 می 2020 برای منطقه موردمطالعه از سایت https://smos-diss.eo.esa.int استفاده شد.نتایج و بحث در کنار سواحل میزان کلروفیل-آ بیشتر است و ایستگاه های کنارک جود و خور میدانی دارای غلظت بالاتری از کلروفیل-آ هستند. خروجی های حاصل از دو روش متفاوت در تخمین میزان کلروفیل-آ در منطقه مورد مطالعه مشابهت دارد. همچنین نتایج نشان داد که در ایستگاه های چابهار، کنارک، جود و گواتر در سال های اخیر میزان کلروفیل-آ افزایش یافته است. در مناطق چابهار و کنارک در طول ده سال این افزایش چشمگیر بوده و افزایش ناگهانی کلروفیل در سال اخیر در ایستگاه های جود و خور میدانی نیاز به مطالعات بیشتری جهت شناخت علل دارد و باید مورد توجه قرار گیرد. نمودار میزان تغییرات کلروفیل-آ در طی سال 2019 تا 2020 نشان می دهد که میزان کربن آلی از میزان کلروفیل-آ پیروی می کند و در مناطقی مانند چابهار و کنارک میزان کربن آلی بالاتری را شاهد هستیم. بیشترین افزایش دما در تمامی سه دوره مورد بررسی در بخش های بندر چابهار و کنارک بوده است، که فعالیت های انسانی یکی از عوامل اصلی آن است. با بررسی روند دهساله تغییرات افزایشی دما در بندرهای خور میدانی و جود نیز قابلمشاهده است. روند کلی دما همان گونه که انتظار می رود به سمت شرق کاهشی است زیرا به آب های آزاد نزدیکتر است. فصولی که دمای آب کمتر است میزان کلروفیل-آ بالاتر بوده است. نتایج نقشه های کلروفیل-آ توسط نرم افزارهای ENVI و پلت فرم گوگل ارث انجین، غلظت کلروفیل-آ در فصل پاییز و زمستان نسبت به بهار و تابستان بیشتر بوده است، بالا بودن مقدار غلظت کلروفیل-آ در فصول سرد آب های گرمسیری و نیمه گرمسیری رایج است. همچنین غلظت کلروفیل-آ در مناطق مورد بررسی در امتداد ساحل بیشتر از مناطق دور از ساحل است که این ویژگی در ارتباط با الگوریتم برداشت کلروفیل-آ در آب های نوع یک است؛ به عبارت دیگر، مناطق ساحلی به دلیل عمق کم، بالا بودن کدورت و رسوبات معلق نسبت به مناطق دور از ساحل دارای مقدار بیشتری است. چون در این منطقه تخلیه رودخانه ای وجود ندارد، این مناطق بیشتر تحت تأثیر فرآیندهای هیدرودینامیکی مانند جهت وزش باد و جریانهای دریایی هستند. حداقل میزان غلظت کلروفیل-آ در منطقه در ماه می تا سپتامبر مشاهده شد که این تغییرات مخالف نوسانات دمای سطحی آب بود، که می تواند به دلیل جریانات بالارونده باشد. میزان کربن آلی از مهم ترین عوامل کلیدی برای ارزیابی کارکرد بوم سازگان آبی محسوب می شود که موجب تعیین توان پتانسیل بومسازگان برای فرآوردههای شیلاتی می شود؛ نتایج حاصل از بررسی میزان کربن آلی نشان داد که مقدار کربن آلی همانند کلروفیل-آ در دو فصل پاییز و زمستان بیشتر از بهار و تابستان بود به طوری که، روند تغییرات کربن آلی نیز از روند تغییرات کلروفیل-آ تبعیت داشت. بین نوسانات دما و میزان کلروفیل-آ همبستگی وجود دارد، این همبستگی نشان دهنده اهمیت دمای سطح آب در تغییرات میزان رشد فیتوپلانگتون ها بهعنوان یکی از عوامل اقلیمی است و باعث شده است مهم ترین پارامتر تأثیرگذار روی کلروفیل-آ، دمای سطحی آب باشد. بر اساس نتایج به دست آمده روند تغییرات دما در ده سال اخیر افزایشی و گرم ترین ایستگاه ها ایستگاه های چابهار و کنارک هستند. ازلحاظ شوری نیز مناطقی که شوری کمتری را داشتند دارای میزان کلروفیل-آ بالاتری بودند. مقایسه داده های حاصل از این تحقیق با موارد فوق گویای آن است که دامنه نوسانات ثبت شده پارامترهای کیفی مورد بررسی در محدوده طبیعی آب های منطقه با مطالعات مشابه در منطقه موردمطالعه توسط سایر متخصصین مطابقت دارد.نتیجه گیری نتایج این پژوهش نشان دهنده دقت قابلقبول نتایج حاصل در مقایسه با داده های پژوهش های مشابه برکنار سرعت و سهولت روش کار است. بنابراین می توان با کمک گرفتن از علم سنجش از دور با پایش بهموقع پارامترهای کیفی پهنه های آبی از ایجاد بحران های بزرگ پیشگیری و در هزینه و زمان صرفهجویی کرد، مشکلاتی که ممکن است در صورت وقوع برگشتناپذیر باشند.
Acheampong C. 2018. Deriving algal concentration from Sentinel-2 through a downscaling technique: A case near the intake of a desalination plant. Journal of Geophysical Research 103: 24937-24953. doi:https://doi.org/10.1029/98JC02160.
Bouman HA, Jackson T, Sathyendranath S, Platt T. 2020. Vertical structure in chlorophyll profiles: influence on primary production in the Arctic Ocean. Philosophical Transactions of the Royal Society A, 378(2181): 20190351. doi:https://doi.org/10.1098/rsta.2019.0351.
Cadée GC, Hegeman J. 1991. Phytoplankton primary production, chlorophyll and species composition, organic carbon and turbidity in the Marsdiep in 1990, compared with foregoing years. Hydrobiological Bulletin, 25(1): 29-35. doi:https://doi.org/10.1007/BF02259586.
Cui T, Zhang J, Wang K, Wei J, Mu B, Ma Y, Zhu J, Liu R, Chen X. 2020. Remote sensing of chlorophyll a concentration in turbid coastal waters based on a global optical water classification system. ISPRS Journal of Photogrammetry and Remote Sensing, 163: 187-201. doi:https://doi.org/10.1016/j.isprsjprs.2020.02.017.
Deng Y, Zhang Y, Li D, Shi K, Zhang Y. 2017. Temporal and spatial dynamics of phytoplankton primary production in Lake Taihu derived from MODIS data. Remote Sensing, 9(3): 195. doi:https://doi.org/10.3390/rs9030195.
Gholamalifad M, Ahmadi B, Nouri P. 2020. Remote Sensing Monitoring of Sea Surface Temperature and Chlorophyll-a Variability in the Persian Gulf and Oman Sea: Influential Factors on Net Primary Production. Fisheries Science and Technology, 9(4): 305-333. http://jfst.modares.ac.ir/article-306-49533-en.html. (In Persian).
Gregg WW, Casey NW, McClain CR. 2005. Recent trends in global ocean chlorophyll. Geophysical Research Letters, 32(3). doi:https://doi.org/10.1029/2004GL021808.
Haghparast M, Mokhtarzade M. 2018. Estimation of turbidity and chlorophyll a concentration in the Caspian Sea through time series analysis of satellite images and wavelet neural networks. Iranian Journal of Remote Sensing & GIS, 10(1): 91-108. (In Persian).
Hernandez O, Jouanno J, Echevin V, Aumont O. 2017. Modification of sea surface temperature by chlorophyll concentration in the Atlantic upwelling systems. Journal of Geophysical Research: Oceans, 122(7): 5367-5389. doi:https://doi.org/10.1002/2016JC012330.
Hu M, Zhang Y, Ma R, Xue K, Cao Z, Chu Q, Jing Y. 2021. Optimized remote sensing estimation of the lake algal biomass by considering the vertically heterogeneous chlorophyll distribution: Study case in Lake Chaohu of China. Science of The Total Environment, 771: 144811. doi:https://doi.org/10.1016/j.scitotenv.2020.144811.
Huang Y, Jiang D, Zhuang D, Fu J. 2010. Evaluation of hyperspectral indices for chlorophyll-a concentration estimation in Tangxun Lake (Wuhan, China). International journal of environmental research and public health, 7(6): 2437-2451. doi:https://doi.org/10.3390/ijerph7062437.
Irwin AJ, Finkel ZV. 2008. Mining a sea of data: Deducing the environmental controls of ocean chlorophyll. PloS one, 3(11): e3836. doi:https://doi.org/10.1371/journal.pone.0003836.
Kavak MT. 2012. Long term investigation of SST regime variability and its relationship with phytoplankton in the Caspian Sea using remotely sensed AVHRR and SeaWiFS data. Turkish Journal of Fisheries and Aquatic Sciences, 12(3). doi:https://doi.org/10.4194/1303-2712-v12_3_20.
Kessouri F, Ulses C, Estournel C, Marsaleix P, d'Ortenzio F, Severin T, Taillandier V, Conan P. 2018. Vertical mixing effects on phytoplankton dynamics and organic carbon export in the western Mediterranean Sea. Journal of Geophysical Research: Oceans, 123(3): 1647-1669. doi:https://doi.org/10.1002/2016JC012669.
Khebri Z, Nejadkoorki F, Sodaie Zadeh H. 2015. The relationship between land use vector parameters and river water quality using GIS (Case study: Zayandehrood river). Journal of RS and GIS for Natural Resources, 6(1): 79-89. http://girs.iaubushehr.ac.ir/article_516775.html?lang=en. (In Persian).
Mahdavifard M, Valizadeh Kamran K, Atazadeh E. 2020. Estimation of chlorophyll-a concentration using ground data and Sentinel-2 and Landsat-8 Satellite images processing (Case study: Tiab Estuary). Journal of RS and GIS for Natural Resources, 11(1): 72-83. http://girs.iaubushehr.ac.ir/article_672377.html?lang=en. (In Persian).
Martin S. 2014. An introduction to ocean remote sensing. Cambridge University Press, illustrated, revised, 496 p.
Mascarenhas V, Keck T. 2018. Marine optics and ocean color remote sensing. In: YOUMARES 8–Oceans Across Boundaries: Learning from each other, Proceedings of the 2017 conference for YOUng MARine RESearchers in Kiel, Germany. p 41.
Mir Alizadehfard SR, Mansouri S. 2019. Evaluation of indicators of remote sensing measurement in quantitative and qualitative studies of surface water with Landsat-8 satellite images (Case study: South of Khuzestan province). Journal of RS and GIS for Natural Resources, 10(2): 63-84. http://girs.iaubushehr.ac.ir/article_666799_en.html. (In Persian).
Moghadam NK, Motesharezadeh B, Maali-Amiri R, Lajayer BA, Astatkie T. 2020. Effects of potassium and zinc on physiology and chlorophyll fluorescence of two cultivars of canola grown under salinity stress. Arabian Journal of Geosciences, 13(16): 1-8. doi:https://doi.org/10.1007/s12517-020-05776-y.
Moradi M, Kabiri K. 2015. Spatio-temporal variability of SST and Chlorophyll-a from MODIS data in the Persian Gulf. Marine pollution bulletin, 98(1-2): 14-25. doi:https://doi.org/10.1016/j.marpolbul.2015.07.018.
Nezlin NP, Polikarpov IG, Al-Yamani FY, Rao DS, Ignatov AM. 2010. Satellite monitoring of climatic factors regulating phytoplankton variability in the Arabian (Persian) Gulf. Journal of Marine Systems, 82(1-2): 47-60. doi:https://doi.org/10.1016/j.jmarsys.2010.03.003.
Papenfus M, Schaeffer B, Pollard AI, Loftin K. 2020. Exploring the potential value of satellite remote sensing to monitor chlorophyll-a for US lakes and reservoirs. Environmental Monitoring and Assessment, 192(12): 1-22. doi:https://doi.org/10.1007/s10661-020-08631-5.
Poddar S, Chacko N, Swain D. 2019. Estimation of Chlorophyll-a in northern coastal Bay of Bengal using Landsat-8 OLI and Sentinel-2 MSI sensors. Frontiers in Marine Science, 6: 598. doi:https://doi.org/10.3389/fmars.2019.00598.
Reilly JE, Maritorena S, Siegel DA, O’Brien MC, Toole D, Mitchell BG, Kahru M, Chavez FP, Strutton P, Cota GF. 2000. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. SeaWiFS postlaunch calibration and validation analyses, Part, 3: 9-23.
Reynolds RM. 1993. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Marine Pollution Bulletin, 27: 35-59. doi:https://doi.org/10.1016/0025-326X(93)90007-7.
Simpson JH, Sharples J. 2012. Introduction to the physical and biological oceanography of shelf seas. Cambridge University Press, 345 p.
Tepanosayn G, Muradyan V, Hovsepyan A, Minasyan L, Asmaryan S. 2017. A Landsat 8 OLI Satellite Data-Based Assessment of Spatio-Temporal Variations of Lake Sevan Phytoplankton Biomass. Ann Valahia Univ Targoviste Geogr Ser, 17(1): 83-89. doi:https://doi.org/10.1515/avutgs-2017-0008.
Toming K, Kutser T, Laas A, Sepp M, Paavel B, Nõges T. 2016. First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery. Remote Sensing, 8(8): 640. doi:https://doi.org/10.3390/rs8080640.
Vinh PQ, Ha NTT, Binh NT, Thang NN, Oanh L, Thao N. 2019. Developing algorithm for estimating chlorophyll-a concentration in the Thac Ba Reservoir surface water using Landsat 8 Imagery. VIETNAM Journal of Earth Sciences, 41(1): 10-20. doi:https://doi.org/10.15625/0866-7187/41/1/13542.
Watanabe F, Alcantara E, Rodrigues T, Rotta L, Bernardo N, Imai N. 2017. Remote sensing of the chlorophyll-a based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir, Brazil). Anais da Academia Brasileira de Ciências, 90: 1987-2000. doi:https://doi.org/10.1590/0001-3765201720170125.
_||_Acheampong C. 2018. Deriving algal concentration from Sentinel-2 through a downscaling technique: A case near the intake of a desalination plant. Journal of Geophysical Research 103: 24937-24953. doi:https://doi.org/10.1029/98JC02160.
Bouman HA, Jackson T, Sathyendranath S, Platt T. 2020. Vertical structure in chlorophyll profiles: influence on primary production in the Arctic Ocean. Philosophical Transactions of the Royal Society A, 378(2181): 20190351. doi:https://doi.org/10.1098/rsta.2019.0351.
Cadée GC, Hegeman J. 1991. Phytoplankton primary production, chlorophyll and species composition, organic carbon and turbidity in the Marsdiep in 1990, compared with foregoing years. Hydrobiological Bulletin, 25(1): 29-35. doi:https://doi.org/10.1007/BF02259586.
Cui T, Zhang J, Wang K, Wei J, Mu B, Ma Y, Zhu J, Liu R, Chen X. 2020. Remote sensing of chlorophyll a concentration in turbid coastal waters based on a global optical water classification system. ISPRS Journal of Photogrammetry and Remote Sensing, 163: 187-201. doi:https://doi.org/10.1016/j.isprsjprs.2020.02.017.
Deng Y, Zhang Y, Li D, Shi K, Zhang Y. 2017. Temporal and spatial dynamics of phytoplankton primary production in Lake Taihu derived from MODIS data. Remote Sensing, 9(3): 195. doi:https://doi.org/10.3390/rs9030195.
Gholamalifad M, Ahmadi B, Nouri P. 2020. Remote Sensing Monitoring of Sea Surface Temperature and Chlorophyll-a Variability in the Persian Gulf and Oman Sea: Influential Factors on Net Primary Production. Fisheries Science and Technology, 9(4): 305-333. http://jfst.modares.ac.ir/article-306-49533-en.html. (In Persian).
Gregg WW, Casey NW, McClain CR. 2005. Recent trends in global ocean chlorophyll. Geophysical Research Letters, 32(3). doi:https://doi.org/10.1029/2004GL021808.
Haghparast M, Mokhtarzade M. 2018. Estimation of turbidity and chlorophyll a concentration in the Caspian Sea through time series analysis of satellite images and wavelet neural networks. Iranian Journal of Remote Sensing & GIS, 10(1): 91-108. (In Persian).
Hernandez O, Jouanno J, Echevin V, Aumont O. 2017. Modification of sea surface temperature by chlorophyll concentration in the Atlantic upwelling systems. Journal of Geophysical Research: Oceans, 122(7): 5367-5389. doi:https://doi.org/10.1002/2016JC012330.
Hu M, Zhang Y, Ma R, Xue K, Cao Z, Chu Q, Jing Y. 2021. Optimized remote sensing estimation of the lake algal biomass by considering the vertically heterogeneous chlorophyll distribution: Study case in Lake Chaohu of China. Science of The Total Environment, 771: 144811. doi:https://doi.org/10.1016/j.scitotenv.2020.144811.
Huang Y, Jiang D, Zhuang D, Fu J. 2010. Evaluation of hyperspectral indices for chlorophyll-a concentration estimation in Tangxun Lake (Wuhan, China). International journal of environmental research and public health, 7(6): 2437-2451. doi:https://doi.org/10.3390/ijerph7062437.
Irwin AJ, Finkel ZV. 2008. Mining a sea of data: Deducing the environmental controls of ocean chlorophyll. PloS one, 3(11): e3836. doi:https://doi.org/10.1371/journal.pone.0003836.
Kavak MT. 2012. Long term investigation of SST regime variability and its relationship with phytoplankton in the Caspian Sea using remotely sensed AVHRR and SeaWiFS data. Turkish Journal of Fisheries and Aquatic Sciences, 12(3). doi:https://doi.org/10.4194/1303-2712-v12_3_20.
Kessouri F, Ulses C, Estournel C, Marsaleix P, d'Ortenzio F, Severin T, Taillandier V, Conan P. 2018. Vertical mixing effects on phytoplankton dynamics and organic carbon export in the western Mediterranean Sea. Journal of Geophysical Research: Oceans, 123(3): 1647-1669. doi:https://doi.org/10.1002/2016JC012669.
Khebri Z, Nejadkoorki F, Sodaie Zadeh H. 2015. The relationship between land use vector parameters and river water quality using GIS (Case study: Zayandehrood river). Journal of RS and GIS for Natural Resources, 6(1): 79-89. http://girs.iaubushehr.ac.ir/article_516775.html?lang=en. (In Persian).
Mahdavifard M, Valizadeh Kamran K, Atazadeh E. 2020. Estimation of chlorophyll-a concentration using ground data and Sentinel-2 and Landsat-8 Satellite images processing (Case study: Tiab Estuary). Journal of RS and GIS for Natural Resources, 11(1): 72-83. http://girs.iaubushehr.ac.ir/article_672377.html?lang=en. (In Persian).
Martin S. 2014. An introduction to ocean remote sensing. Cambridge University Press, illustrated, revised, 496 p.
Mascarenhas V, Keck T. 2018. Marine optics and ocean color remote sensing. In: YOUMARES 8–Oceans Across Boundaries: Learning from each other, Proceedings of the 2017 conference for YOUng MARine RESearchers in Kiel, Germany. p 41.
Mir Alizadehfard SR, Mansouri S. 2019. Evaluation of indicators of remote sensing measurement in quantitative and qualitative studies of surface water with Landsat-8 satellite images (Case study: South of Khuzestan province). Journal of RS and GIS for Natural Resources, 10(2): 63-84. http://girs.iaubushehr.ac.ir/article_666799_en.html. (In Persian).
Moghadam NK, Motesharezadeh B, Maali-Amiri R, Lajayer BA, Astatkie T. 2020. Effects of potassium and zinc on physiology and chlorophyll fluorescence of two cultivars of canola grown under salinity stress. Arabian Journal of Geosciences, 13(16): 1-8. doi:https://doi.org/10.1007/s12517-020-05776-y.
Moradi M, Kabiri K. 2015. Spatio-temporal variability of SST and Chlorophyll-a from MODIS data in the Persian Gulf. Marine pollution bulletin, 98(1-2): 14-25. doi:https://doi.org/10.1016/j.marpolbul.2015.07.018.
Nezlin NP, Polikarpov IG, Al-Yamani FY, Rao DS, Ignatov AM. 2010. Satellite monitoring of climatic factors regulating phytoplankton variability in the Arabian (Persian) Gulf. Journal of Marine Systems, 82(1-2): 47-60. doi:https://doi.org/10.1016/j.jmarsys.2010.03.003.
Papenfus M, Schaeffer B, Pollard AI, Loftin K. 2020. Exploring the potential value of satellite remote sensing to monitor chlorophyll-a for US lakes and reservoirs. Environmental Monitoring and Assessment, 192(12): 1-22. doi:https://doi.org/10.1007/s10661-020-08631-5.
Poddar S, Chacko N, Swain D. 2019. Estimation of Chlorophyll-a in northern coastal Bay of Bengal using Landsat-8 OLI and Sentinel-2 MSI sensors. Frontiers in Marine Science, 6: 598. doi:https://doi.org/10.3389/fmars.2019.00598.
Reilly JE, Maritorena S, Siegel DA, O’Brien MC, Toole D, Mitchell BG, Kahru M, Chavez FP, Strutton P, Cota GF. 2000. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. SeaWiFS postlaunch calibration and validation analyses, Part, 3: 9-23.
Reynolds RM. 1993. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Marine Pollution Bulletin, 27: 35-59. doi:https://doi.org/10.1016/0025-326X(93)90007-7.
Simpson JH, Sharples J. 2012. Introduction to the physical and biological oceanography of shelf seas. Cambridge University Press, 345 p.
Tepanosayn G, Muradyan V, Hovsepyan A, Minasyan L, Asmaryan S. 2017. A Landsat 8 OLI Satellite Data-Based Assessment of Spatio-Temporal Variations of Lake Sevan Phytoplankton Biomass. Ann Valahia Univ Targoviste Geogr Ser, 17(1): 83-89. doi:https://doi.org/10.1515/avutgs-2017-0008.
Toming K, Kutser T, Laas A, Sepp M, Paavel B, Nõges T. 2016. First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery. Remote Sensing, 8(8): 640. doi:https://doi.org/10.3390/rs8080640.
Vinh PQ, Ha NTT, Binh NT, Thang NN, Oanh L, Thao N. 2019. Developing algorithm for estimating chlorophyll-a concentration in the Thac Ba Reservoir surface water using Landsat 8 Imagery. VIETNAM Journal of Earth Sciences, 41(1): 10-20. doi:https://doi.org/10.15625/0866-7187/41/1/13542.
Watanabe F, Alcantara E, Rodrigues T, Rotta L, Bernardo N, Imai N. 2017. Remote sensing of the chlorophyll-a based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir, Brazil). Anais da Academia Brasileira de Ciências, 90: 1987-2000. doi:https://doi.org/10.1590/0001-3765201720170125.