بررسی اثربخشی آموزش بازنماییهای طرحوارهای بر توانایی حل مسائل غیرمعمولی ریاضی
الموضوعات : پژوهش در برنامه ریزی درسیمهران عزیزی محمودآباد 1 , محمدجواد لیاقت دار 2 , حمید رضا عریضی 3
1 - دانشجوی دکتری برنامهریزی درسی، دانشکده علوم تربیتی و روانشناسی، دانشگاه اصفهان، اصفهان، ایران.
2 - استاد گروه علوم تربیتی، دانشکده علوم تربیتی و روانشناسی، دانشگاه اصفهان، اصفهان، ایران.
3 - استاد گروه روانشناسی، دانشکده علوم تربیتی و روانشناسی، دانشگاه اصفهان، اصفهان، ایران.
الکلمات المفتاحية: ریاضی, مسائل غیرمعمولی, توانایی حل مسئله, بازنماییهای طرحوارهای,
ملخص المقالة :
هدف این پژوهش، بررسی اثربخشی آموزش بازنمایی های طرحوارهای بر تواناییحل مسائل غیرمعمولی ریاضی دانش آموزان پایه ششم ابتدایی است. این پژوهش از نوع تحلیل محتوا و طرح های نیمهآزمایشی از نوع پیش آزمون- پس آزمون- پیگیری با گروه کنترل است. پس از مطالعه و طراحی آموزشی، 40 نفر از دانش آموزان پسر پایه ششم ابتدایی مشغول به تحصیل در یک آموزشگاه در سال تحصیلی 97-1396 در شهر یاسوج بهصورت داوطلب در این پژوهش شرکت کردند. مشارکت کنندگان با انتساب تصادفی به دو گروه آزمایش و کنترل تقسیم شده و برای 12 جلسه (هر هفته یک جلسه) با استفاده از روش آموزش بازنمایی محور تحت آموزش قرار گرفتند. ابزار گردآوری داده ها در بخش تحلیل محتوا چکلیست و در بخش نیمهآزمایشی آزمون محقق ساخته بود. برای تجزیهوتحلیل داده ها در تحلیل محتوا از تکنیک آنتروپی شانون و در بخش نیمه آزمایشی از آزمون تحلیل واریانس با اندازه گیری مکرر استفاده شد. نتایج تحلیل محتوا نشان می دهد بیشترین توجه برای توزیع و حضور مسائل غیرمعمولی به ترتیب به مسائل بازنمایی سلسله مراتبی سپس بازنمایی جزء-کل و درنهایت به مسائل بازنمایی شبکه ای شده است و مسائل بازنمایی ماتریسی جایگاهی در کتاب درسی ندارند. همچنین نتایج تحلیل واریانس با اندازه گیری مکرر نشان داد که تفاوت معناداری در میانگین تمام مؤلفههای توانایی حل مسائل غیرمعمولی (05/0P<) بین گروه کنترل و آزمایش وجود دارد؛ لذا آموزش بازنمایی های طرحوارهای موجب افزایش توانایی حل مسائل غیرمعمولی ریاضی در دانش آموزان شده است. به علاوه این نتایج نشان می دهد که استفاده از بازنمایی های طرحوارهای در حل مسائل غیرمعمولی در طول زمان ثبات دارد. نتایج این مطالعه لزوم توجه ویژه به بازنمایی های طرحوارهای در کتاب ریاضی پایه ششم ابتدایی و استفاده معلمان و دبیران ریاضی از این بازنمایی ها در حل مسائل غیرمعمولی را مورد تأکید قرار می دهد.
Alkhateeb, M. (2018). Multiple Representations in 8th Grade Mathematics Textbook and the Extent to which Teachers Implement Them. International Electronic Journal of Mathematics Education, 14(1), 137-145.
Booth, R. D., & Thomas, M. O. (2000). Visualization in mathematics learning: Arithmetic problem-solving and student difficulties. The Journal of Mathematical Behavior, 18(2), 169-190.
Bibi, A., Ahmad, M., Shahid, W., Zamri, S. N. S., & Abedalaziz, N. A. M. (2019). An Evolving Research to Tackle Teaching and Learning Challenges during Differential Equations Course: A Combination of Non-routine Problems and Teacher Training. International Electronic Journal of Mathematics Education, 14(3), 647-656.
Deliyianni, E., Gagatsis, A., Elia, I., & Panaoura, A. (2016). Representational flexibility and problem-solving ability in fraction and decimal number addition: A structural model. International Journal of Science and Mathematics Education, 14(2), 397-417.
Diezmann, C. M. (2002). Enhancing students' problem solving through diagram use. Australian Primary Mathematics Classroom, 7(3), 4-8.
Diezmann, C. M., & English, L. D. (2001). Promoting the use of diagrams as tools for thinking. 2001 National Council of Teachers of Mathematics Yearbook: The Role of Representation in School Mathematics, 77-89.
Diezmann, C. M. (2005). Assessing primary students’ knowledge of networks, hierarchies and matrices using scenario-based tasks. MERGA.
DeWindt-King, A. M., & Goldin, G. A. (2003). Children’s visual imagery: Aspects of cognitive representation in solving problems with fractions. Mediterranean Journal for Research in Mathematics Education, 2(1), 1-42.
Fagnant, A., & Vlassis, J. (2013). Schematic representations in arithmetical problem solving: Analysis of their impact on grade 4 students. Educational Studies in Mathematics, 84(1), 149-168.
Flores, R., Koontz, E., Inan, F. A., & Alagic, M. (2015). Multiple representation instruction first versus traditional algorithmic instruction first: Impact in middle school mathematics classrooms. Educational Studies in Mathematics, 89(2), 267-281.
Gall, M. D., Borg, W. R., & Gall, J. P. (2004). Educational research: An introduction. translated by Ahmad Reza Nasr et all. Tehran. samt. [persian]
Hmelo-Silver, C. E., Jordan, R., Eberbach, C., & Sinha, S. (2017). Systems learning with a conceptual representation: a quasi-experimental study. Instructional Science, 45(1), 53-72.
Jitendra, A., DiPipi, C. M., & Perron-Jones, N. (2002). An Exploratory Study of Schema-Based Word-Problem—Solving Instruction for Middle School Students with Learning
Disabilities An Emphasis on Conceptual and Procedural Understanding. The Journal of Special Education, 36(1), 23-38.
Koichu, B., & Leron, U. (2015). Proving as problem solving: The role of cognitive decoupling. The Journal of Mathematical Behavior, 40, 233-244.
Kuzle, A. (2017). Delving into the Nature of Problem Solving Processes in a Dynamic Geometry Environment: Different Technological Effects on Cognitive Processing. Technology, Knowledge and Learning, 22(1), 37-64.
Kazemi, F., Rafiepour, A, & Fadaie, M. (2019). Investigate content knowledge and pedagogy content knowledge of the primary school teachers and its relation with the students’ problem-solving ability at mathematical fractions. Research in Curriculum Planning. 33(2), 104-120. [persian]
Levain, J. P., Le Borgne, P., & Simard, A. (2006). Apprentissage de schemas et resolution de problemes en SEGPA. Revue française de pedagogie. Recherches en education, (155), 95-109.
Montague, M., Warger, C., & Morgan, T. H. (2000). Solve it! Strategy instruction to improve mathematical problem solving. Learning Disabilities Research & Practice, 15(2), 110-116.
Mellone, M., Verschaffel, L., & Van Dooren, W. (2017). The effect of rewording and dyadic interaction on realistic reasoning in solving word problems. The Journal of Mathematical Behavior, 46, 1-12.
Monoyiou, A., Papageorgiou, P., & Gagatsis, A. (2007). Students’ and teachers’ representations in problem solving. In Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education: Working Group (Vol. 1, pp. 141-151).
Novick, L. R. (2006). Understanding spatial diagram structure: An analysis of hierarchies, matrices, and networks. The Quarterly Journal of Experimental Psychology, 59(10), 1826-1856.
Novick, L. R., & Hurley, S. M. (2001). To matrix, network, or hierarchy: That is the question. Cognitive Psychology, 42(2), 158-216.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics (Vol. 1). Natl Council of Teachers of Mathematics.
Pantziara, M., Gagatsis, A., & Elia, I. (2009). Using diagrams as tools for the solution of non-routine mathematical problems. Educational Studies in Mathematics, 72(1), 39-60.
Panwalkar, S. S., & Koulamas, C. (2019). The evolution of schematic representations of flow shop scheduling problems. Journal of Scheduling, 1-13.
Shiakalli, M. A., & Zacharos, K. (2014). Building meaning through problem solving practices: the case of four-year olds. The Journal of Mathematical Behavior, 35, 58-73.
Salimi, M., Sadi Pour, E., Delavar, A., & Maleki, H. (2014). Comparison of training effects in imagery strategies of mental imagery of think-aloud of written representation and motor representation on the performance of elementary students in solving verbal math problems. Research in Curriculum Planning. 14(2). 12-22. [persian]
Uesaka, Y., Manalo, E., & Ichikawa, S. I. (2007). What kinds of perceptions and daily learning behaviors promote students' use of diagrams in mathematics problem solving?. Learning and Instruction, 17(3), 322-335.
Van Garderen, D. (2007). Teaching students with LD to use diagrams to solve mathematical word problems. Journal of Learning Disabilities, 40(6), 540-553.
Van Meter, P. (2001). Drawing construction as a strategy for learning from text. Journal of educational psychology, 93(1), 129.
Wu, H. K., Lin, Y. F., & Hsu, Y. S. (2013). Effects of representation sequences and spatial ability on students’ scientific understandings about the mechanism of breathing. Instructional Science, 41(3), 555-573.
_||_