Effect of secondary metabolite compounds of Dracocephalum kotschyi Boiss plant on synthesis of Cu nanoparticles
الموضوعات :Malihe Samadi Kazemi 1 , Zohre Imani 2
1 - Department of Chemistry, Faculty of Science, Bojnourd Branch, Islamic Azad University, Bojnourd 9417697796, Iran
2 - Department of Chemistry, Faculty of Science, Bojnourd Branch, Islamic Azad University, Bojnourd 9417697796, Iran
الکلمات المفتاحية: Secondary metabolites, CuNPs, Dracocephalum kotschyi Boiss, Extract, Essential oil, Antibacterial,
ملخص المقالة :
Medicinal plants are a rich source of secondary metabolite. In the present research, the dried aerial parts of Dracocephalum kotschyi Boiss were extracted by digestion method. Copper nanoparticles were synthesized from the combination of the extract with copper chloride solution at a ratio of 1:4. The characteristics of copper nanoparticles by ultraviolet-visible spectrometry (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X- ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET) and fourier transform infrared spectroscopy (FT-IR) were analyzed. The SEM analysis predicted the size of copper nanoparticles to be 63.28 nm. The EDS spectrum confirmed the presence of copper nanoparticles. BET analysis predicted mesoporous structure of copper nanoparticles. Thirty-three (31) compounds in the essential oil of plant identified, which constituted 99.7% of the essential oil and 8 major compounds were perillaacetate (49.0 %), 2-methyl-1-octen-3-yne (17.2%), D-limonene (15.0%), 1,8-cineole (5.2%), trans-alpha-ocimene (2.4%), p-mentha-1(7),8(10)-dien-9-ol (1.1%), sabinene (1.4%) and 4-terpineol (1.5%).
Andriamaharavo, N.R. 2014. Retention Data. NIST Mass Spectrometry Data Center, NIST Mass Spectrometry Data Center.
Abedini, A., Daud, A.R, AbdulHamid, M.A., KamilOthman, N., Saion., E. 2013. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res. Lett. 8(1), 1-10.
Ali, Z.I., Ghazy, O.A., Meligi, G., Saleh, H.H., Bekhit, M.J.J.O.I., 2018. Copper nanoparticles: Synthesis, characterization and its application as catalyst for p-nitrophenol reduction. J. Inorg. Organomet. Polym. 28(3), 1195- 1205.
Aguilar, M.S., Esparza, R., Rosas, G., 2019. Synthesis of Cu nanoparticles by chemical reduction method. Trans. Nonferrous Met. Soc. China 29(7), 1510-1515.
Cavalli, J.F., Tomi, F., Bernardini, A.F., Casanova, J., 2003b. Composition and chemical variability of the bark oil of Cedrelopsis grevei H. Baillon from Madagascar. Flavour Fragr. J. 18(6), 532-538.
Camilo, C.K., Alves Nonato, C.F., Galvão-Rodrigues, F.F., Costa, W.D., Clemente, G.G., Macedo, M.A.C.S., Rodrigues, F.F.G., Martins da Costa, J.G., 2017. Acaricidal activity of essential oils. Trends Phytochem. Res. 1(4), 183-198.
Chung, I.M., Abdul Rahuman, A., Marimuthu, S., Vishnu Kirthi, A., Anbarasan, K., Padmini, P., Rajakumar, G., 2017. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp. Ther. Med. 14(1), 18-24.
Couladis, M., Chinou, I.B., Tzakou, O., Petrakis, P.V., 2003. Composition and antimicrobial activity of the essential oil of Hypericum rumeliacum subsp. apollinis (Boiss & Heldr.). Phytother. Res. 17(2), 152-154.
Cuong, H.N., Pansambal, S., Ghotekar, S., Oza, R., Hai, N.T.T., Viet, N.M., Nguyen, V.H., 2022. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environ. Res. 203, 111858.
Dewangan, K., Kant, T., Shrivas, K., 2022. Copper Nanoparticle-Based Sensors for Environmental Pollutions. In Copper Nanostructures: Next-Generation of Agrochemicals for Sustainable Agroecosystems, pp. 751-774.
Dharmawan, J., Kasapis, S., Sriramula, P., Lear, M.J., Curran, P., 2009. Evaluation of aroma-active compounds in Pontianak orange peel oil (Citrus nobilis Lour. Var. microcarpa Hassk.) by gas chromatography-olfactometry, aroma reconstitution, and omission test. J. Agric. Food Chem. 57(1), 239-244.
Elsupikhe, R.F., Shameli, K., Ahmad, M.B., Ibrahim, N.A., Zainudin, N., 2015. Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Res. Lett. 10(1), 1-8.
Fernandez, X., Pintaric, C., Lizzani-Cuvelier, L., Loiseau, A.M., Morello, A., Pellerin, P., 2006. Chemical composition of absolute and supercritical carbon dioxide extract of Aframomum melegueta. Flavour Fragr. J. 21(1), 162-165.
Guzman, A., Arroyo, J., Verde, L., Rengifo, J., 2015. Synthesis and characterization of copper nanoparticles/polyvinyl chloride (Cu NPs/PVC) nanocomposites. Procedia Mat. Sci. 9(1), 298-304.
Husen, A., Siddiqi, K.S., 2014. Phytosynthesis of nanoparticles: Concept, controversy and application. Nanoscale Res. Lett. 9(1), 1-24.
Jalali-Heravi, M., Zekavat, B., Sereshti, H., 2006. Characterization of essential oil components of Iranian geranium oil using gas chromatography-mass spectrometry combined with chemometric resolution techniques. J. Chromatogr. A. 1114(1), 154-163.
Jonsson, J.A. 1987. Chromatographic Theory and Basic Principles, CRC Press, New York.
Khamliche, T., Khamlich, S., Moodley, M.K., Mothudi, B.M., Henini, M., Maaza, M., 2021. Laser fabrication of Cu nanoparticles based nanofluid with enhanced thermal conductivity: Experimental and molecular dynamics studies. J. Mol. Liq. 323, 114975.
Kundakovic, T., Fokialakis, N., Kovacevic, N., Chinou. I., 2007. Essential oil composition of Achillea lingulata and A. umbellate.. Flavour Fragr. J. 22(3), 184-187.
Mahdavi, B., Hosseini, S., Mohammadhosseini, M., Mehrshad, M., 2022. Preparation and characterization of a novel magnetized nanosphere as a carrier system for drug delivery using Plantago ovata Forssk. hydrogel combined with mefenamic acid as the drug model. Arabian J. Chem. 15(10), 104128.
Malik, M.A., Wani, M.Y., Hashim, M.A., 2012. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arab. J. Chem. 5(4), 397-417.
Nagar, N., Devra, V., 2018. Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves. Mater. Chem. Phys. 213, 44-51.
Ning, H., Zheng, F., Sun, B., Xie, J., Liu, Y., 2008. Solvent-free microwave extraction of essential oil from Zanthoxylum bungeanum Maxim. Food Environ. Ind. (Chinese). 34(5), 179-184.
Diksha Palariya, D., Singh, A., Dhami, A., Kumar, R., Pant, A.K., Prakash, O., 2019. Phytochemical analysis and screening of antioxidant, antibacterial and anti-inflammatory activity of essential oil of Premna mucronata Roxb. leaves. Trends Phytochem. Res. 3(4), 275-286.
Patterson, A.L., 1939. The scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978-982.
Pavlović, M., Kovačević, N., Tzakou, O., Couladis, M., 2006. Essential oil composition of Anthemis triumfetti (L.) DC. Flavour Fragr. J. 21(1), 297-299.
Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., Rahuman, A.A., Santhoshkumar, T., Kirthi, A.V., Jayaseelan, C., Marimuthu, S., 2011. Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol. Res. 109(5), 1403-1415.
Sharma, P., Pant, S., Poonia, P., Kumari, S., Dave, V., Sharma, S., 2018. Green synthesis of colloidal copper nanoparticles capped with Tinospora cordifolia and its application in catalytic degradation in textile dye: An ecologically sound approach. J. Inorg. Organomet. Polym. Mater. 28(6), 2463-2472.
Shankar, S.S., Rai, A., Ahmad, A., Sastry, M., 2004. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275(2), 496-502.
Shende, S., Ingle, A.P., Gade, A., Rai, M., 2015. Green synthesis of copper nanoparticles by Citrus medica Linn.(Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 31(6), 865-873.
Shikha, J.A., Ankita, J.A., Kachhawah, P., Devra, V., 2015. Synthesis and size control of copper nanoparticles and their catalytic application. Trans. Nonferrous Met. Soc. China 25(12), 3995-4000.
Srivastava, K., Dwivedi, K.N., 2018. Formulation and characterization of copper nanoparticles using Neriumodorum soland leaf extract and its antimicrobial activity. Int. J. Drug Dev. Res. 10(3), 29-34.
Smadja, J., Rondeau, P., Sing, A.S.C., 2005. Volatile constituents of five citrus petitgrain essential oils from Reunion. Flavour Fragr. J. 20(4), 399-402.
Tegeder, P., Marelli, M., Freitag, M., Polito, L., Lamping, S., Psaro, R., Glorius, F., Ravoo, B.J., Evangelisti, C., 2018. Metal vapor synthesis of ultrasmall Pd nanoparticles functionalized with N-heterocyclic carbenes. Dalton Trans. 47(36), 12647-12651.
Thakur, S., Sharma, S., Thakur, S., Rai, R., 2018. Green synthesis of copper nano-particles using Asparagus adscendens roxb. Root and leaf extract and their antimicrobial activities. Int. J. Curr. Microbiol. Appl. Sci. 7(4), 683-694.
Kartal, N., Sokmen, M., Tepe, B., Daferera, D., Polissiou, M., Sokmen, A., 2007. Investigation of the antioxidant properties of Ferula orientalis L. using a suitable extraction procedure. Food Chem. 100(2), 584-589.
Khani, R., Roostaei, B., Bagherzade, G., Moudi, M., 2018. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: Application for adsorption of triphenylmethane dye and antibacterial assay. J. Mol. Liq. 255, 541-549.
Khatami, M., Ebrahimi, K., Galehdar, N., Moradi, M.N., Moayyedkazemi, A., 2020. Green synthesis and characterization of copper nanoparticles and their effects on liver function and hematological parameters in mice. Turkish J. Pharm. Sci. 17(4), 412.
Kim, Y.H., Lee, D.K., Jo, B.G., Jeong, J.H., Kang, Y.S., 2006. Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Colloids Surf. A: Physicochem. Eng. Asp. 284, 364-368.
Kundakovic, T., Fokialakis, N., Kovacevic, N., Chinou, I., 2007. Essential oil composition of Achillea lingulata and A. umbellata. Flavour Fragr. J. 22(3), 184-187.
Wang, J., Xu, L., Yang, L., Liu, Z., Zhou, L., 2011. Composition, antibacterial and antioxidant activities of essential oils from Ligusticum sinense and L. jeholense (Umbelliferae) from China. Rec. Nat. Prod. 5(4), 314-318.
Wang, Q., Yang, Y., Zhao, X., Zhu, B., Nan, P., Zhao, J., Wang, L., Chen, F., Liu, Z., Zhong, Y., 2006. Chemical variation in the essential oil of Ephedra sinica from Northeastern China. Food Chem. 98(1), 52-58.
Zhang, Y., Mahdavi, B., Mohammadhosseini, M., Rezaei-Seresht, E., Paydarfard, S., Qorbani, M., Karimian, M., Abbasi, N., Ghaneialvar, H., Karimi, E., 2021. Green synthesis of NiO nanoparticles using Calendula officinalis extract: Chemical charactrization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arabian J. Chem. 14, 103105.
Zhou, J., Wu, Z., Zhang, Z., Liu, W., Xue, Q., 2000. Tribological behavior and lubricating mechanism of Cu nanoparticles in oil. Tribol. Lett. 8(4), 213-218.
Zizovic, I., Stamenić, M., Ivanović, J., Orlović, A., Ristić, M., Djordjević, S., Petrović, S.D., Skala, D., 2007. Supercritical carbon dioxide extraction of sesquiterpenes from valerian root. J. Supercrit. Fluids. 43(2), 249-258.