Phytochemical-based vesicular system for the treatment of vitiligo: A review
الموضوعات :Pooja Pardeshi 1 , Chinmay Kapile 2 , Abhijeet Kulkarni 3 , Vishal Gulecha 4 , Amar Zalte 5 , Shweta Gedam 6
1 - Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Kopargaon, P.O. Box 423603, Maharashtra, India
2 - Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Kopargaon, P.O. Box 423603, Maharashtra, India
3 - School of Pharmaceutical Sciences, Sandip University, Nashik P.O. Box 422213, Maharashtra, India
4 - School of Pharmaceutical Sciences, Sandip University, Nashik P.O. Box 422213, Maharashtra, India
5 - School of Pharmaceutical Sciences, Sandip University, Nashik P.O. Box 422213, Maharashtra, India
6 - Department of Pharmaceutics, Sandip Institute of Pharmaceutical Sciences, Nashik P.O Box 422213, Maharashtra, India
الکلمات المفتاحية: Genetics, Vitiligo, Phytochemical, Pigmentation, liposomes, Vesicular system,
ملخص المقالة :
Vitiligo is a depigmenting disorder that causes white patches on the skin and mucosa. It has an impact on a patient’s mental well-being, physical well-being, and human lifestyle. These depigmented macules were originally mentioned in pre-Hindu, Vedic, and ancient Egyptian manuscripts more than 3,000 years ago. In recent years, there has been a growing interest in using phytochemicals over synthetic compounds in the pharmaceutical field. To better understand the effectiveness of natural products in the fight against vitiligo, large-scale clinical trials are required. Here, in this study, we summarize a list of vesicular formulations, with and without phytochemicals, that have been used and will be utilized in the future to treat vitiligo. To assist further progress in this vitiligo review we hereby mention an overview of pathophysiology, recent updates on clinical trials, and patents.
Alkhateeb, A., Stetler, G.L, Old, W., Talbert, J., Uhlhorn, C., Taylor, M., Fox, A., Miller, C., Dills, D.G., Ridgway, E.C., Bennett, D.C., Fain, P.R., Spritz, R.A., 2002. Mapping of an autoimmunity susceptibility locus (AIS1) to chromosome 1p31.3-p32.2. Hum. Mol. Genet. 11(6), 661-667.
Al-Niaimi, F., Chiang, N.Y.Z., 2017. Topical vitamin C and the skin: Mechanisms of action and clinical applications. J. Clin. Aesthet. Dermatol. 10(7), 14.
Almoshari, Y., 2022. Medicinal plants used for dermatological disorders among the people of the kingdom of Saudi Arabia: A narrative review. Saudi J. Biol. Sci. 103303.
Amigó, M., Payá, M., de Rosa, S., Terencio, M.C., 2007. Antipsoriatic effects of avarol-3′-thiosalicylate are mediated by inhibition of TNF-α generation and NF-αB activation in mouse skin. Br. J. Pharmacol. 152(3), 353-365.
Ashtiani, S.Y., Nasrollahi, S.A., Naeimifar, A., Kashani, A.N., Samadi, A., Yadangi, S., Aboutaleb, E., Abdolmaleki, P., Dinarvand, R., Firooz, A., 2021. Preparation and safety evaluation of topical simvastatin-loaded NLCs for vitiligo. Adv. Pharm. Bull.11(1), 104.
Bickers, D.R., Lim, H.W., Margolis, D., Weinstock, M.A., Goodman, C., Faulkner, E., Gould, C., Gemmen, E. Dall, T., 2006. The burden of skin diseases: 2004: A joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. J. Am. Acad. Dermatol. 55(3), 490-500.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT04271501, Feasibility study to evaluate RECELL and melanocyte keratinocyte transplantation procedure for repigmentation of stable vitiligo lesions; February 17 2020: https://clinicaltrials.gov/ct2/show/NCT04271501.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT04896385, A study to evaluate the mechanism of action of ruxolitinib cream in subjects with vitiligo (TRuE-V MOA);2021 May 21; Available from: https://clinicaltrials.gov/ct2/show/NCT04896385.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT04765826, Comparison between systemic steroids, topical steroids, or calcineurin inhibitors with mini punch grafting in treatment of stable non-segmental vitiligo; 21 February 2021: https://clinicaltrials.gov/ct2/show/NCT04765826.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT03872804, Punch mini graft versus transverse needling or combination of both in treatment of non-segmental vitiligo;2019 March 13; Available from: https://clinicaltrials.gov/ct2/show/NCT03872804.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT04374435, Evaluating the efficacy of the melanocyte keratinocyte transplantation procedure in the treatment of vitiligo;2020 May 5; Available from: https://clinicaltrials.gov/ct2/show/NCT04374435.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT05053022, A study to evaluate the efficacy of micro-needling as a stand-alone treatment for vitiligo; 22 September 2021: https://clinicaltrials.gov/ct2/show/NCT05053022.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT04338581, Evaluation of AMG 714 for vitiligo (REVEAL); 8 April 2020: https://clinicaltrials.gov/ct2/show/NCT04338581.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT04775979, Diphenylcyclopropenone (DPCP) as a depigmenting therapy in extensive vitiligo; 1 March 2021: https://clinicaltrials.gov/ct2/show/NCT04775979.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). IdentifierNCT04738149, Effect of microneedling, bimatoprost, and excimer for the treatment of vitiligo; 4 February 2021: https://clinicaltrials.gov/ct2/show/NCT04738149.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT04774809, Assess the efficacy and safety of SHR0302 ointment in adult patients with vitiligo;2021 March 1; Available from: https://www.clinicaltrials.gov/ct2/show/NCT04774809.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT04927975, Study to evaluate adverse events and changes in disease activity with oral tablets of upadacitinib in adult participants with non-segmental vitiligo; 16 June 2021: https://clinicaltrials.gov/ct2/show/NCT04927975.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT04942860, The evaluation of vitiligous lesions repigmentation after topical administration of methotrexate in patients with active vitiligo; 29 June 2021: https://clinicaltrials.gov/ct2/show/NCT04942860.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT04971200, Pilot study assessing the effect of tildrakizumab in vitiligo (TILDVIT-1227); 21 June 2021: https://clinicaltrials.gov/ct2/show/NCT04971200.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT04245319, Combined effect of acitretin and narrow band ultraviolet B on vitiligo repigmentation; 28 January 2020: https://clinicaltrials.gov/ct2/show/NCT04245319.
Cui, Y., 2015. Traditional Chinese Medicine for Treating Leukoderma and Preparation Method for Traditional Chinese Medicine. Patent No CN105326899A.
Czajkowski, R., Mecińska-Jundziłł, K., 2014. Current aspects of vitiligo genetics. Postepy Dermatol. Alergol. 31(4), 247-255.
Doppalapudi, S., Mahira, S., Khan, W., 2017. Development and in vitro assessment of psoralen and resveratrol co-loaded ultradeformable liposomes for the treatment of vitiligo. J. Photochem. Photobiol. B.174, 44-57.
Ezzedine, K., Amazan, E., Séneschal, J., Cario-André, M., Léauté-Labrèze, C., Vergier, B., Boralevi, F., Taieb, A., 2012. Follicular vitiligo: A new form of vitiligo. Pigment Cell Melanoma Res. 25(4), 527-529.
Ezzedine, K., Lim, H. W., Suzuki, T., Katayama, I., Hamzavi, I., Lan, C.C.E., Goh, B.K., Anbar, T., Silva de Castro, C., Lee, A.Y., Parsad, D., van Geel, N., le Poole, I.C., Oiso, N., Benzekri, L., Spritz, R., Gauthier, Y., Hann, S.K., Picardo, M., Taieb, A., 2012. Revised classification/nomenclature of vitiligo and related issues: The vitiligo global issues consensus conference. Pigment Cell Melanoma Res. 25(3), E1-E2.
Ezzedine, K., Sheth, V., Rodrigues, M., Eleftheriadou, V., Harris, J.E., Hamzavi, I.H., Pandya, A.G., 2015. Vitiligo is not a cosmetic disease. J. Am. Acad. Dermatol. 73(5), 883-885.
Fain, P.R., Gowan, K., LaBerge, G.S., Alkhateeb, A., Stetler, G.L., Talbert, J., Bennett, D.C., Spritz, R.A., 2003. A genome-wide screen for generalized vitiligo: Confirmation of AIS1 on chromosome 1p31 and evidence for additional susceptibility loci. Am. J. Hum. Genet. 72(6), 1560-1564.
Faria, A.R., Mira, M.T., Tarlé, R.G., Silva de Castro, C.C., Dellatorre, G., 2014. Vitiligo--Part 2--classification, histopathology, and treatment. An Bras. Dermatol. 89(5), 784-790.
Gaballa, S.A., El Garhy, O.H., Abdelkader, H., 2020. Cubosomes: Composition, preparation, and drug delivery applications. J. Adv. Biomedical. Pharm. Sci. 3(1), 1-9.
Garg, B.J., Garg, N.K., Beg, S., Singh, B., Katare, O.P., 2016. Nanosized ethosomes-based hydrogel formulations of methoxsalen for enhanced topical delivery against vitiligo: Formulation optimization, in vitro evaluation, and preclinical assessment. J. Drug Target. 24(3), 233-246.
Garg, G., Saraf, S., Saraf, S., 2007. Cubosomes: An overview. Biol. Pharm. Bull. 30(2), 350-353.
Gianfaldoni, S., Wollina, U., Tirant, M., Tchernev, G., Lotti, J., Satolli, F., Rovesti, M., França, K., Lotti, T., 2018. Herbal compounds for the treatment of vitiligo: A review. Maced. J. Med. Sci. 6(1), 203-207.
Gugleva, V., Ivanova, N., Sotirova, Y., Andonova, V., 2021. Dermal drug delivery of phytochemicals with phenolic structure via lipid-based nanotechnologies. Pharmaceuticals 14(9), 837.
Gyawali, R., Paudel, N., Shrestha, S., Silwal, A., 2016. Formulation and evaluation of antibacterial and antioxidant polyherbal lotion. J. Sci. Technol. 21(1), 148-156.
Habeeba, S., Siddiqua, S., 2022. Babchi Unani marketed formulation effective in treatment of vitiligo: A case study. J. Pharmacogn. Phytochem. 1-4.
Hagstrom, E.L., Patel, S., Karimkhani, C., Boyers, L.N., Williams, H.C., Hay, R.J., Weinstock, M.A., Armstrong, A.W., Dunnick, C.A., Margolis, D.J., Dellavalle, R.P., 2015. Comparing cutaneous research funded by the US National Institutes of Health (NIH) with the US skin disease burden. J. Am. Acad. Dermatol. 73(3), 383-391.
Hirschhorn, J.N., Daly, M.J., 2005. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6(2), 95-108.
Jian, Z., Li, K., Song, P., Zhu, G., Zhu, L., Cui, T., Liu, B., Tang, L., Wang, X., Wang, G., Gao, T., 2014. Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2- induced oxidative stress response: A possible mechanism for melanocyte degeneration in vitiligo. J. Invest. Dermatol. 134 (8), 2221-2230.
Jose Humberto, C., 2013. Phytotherapeutic Formulation for Vitiligo Treatment. Patent No BR102013013736A2.
Jose Humberto, C., 2015. Phytotherapeutical Formulation for the Treatment of Vitiligo. Patent No WO2016123682A1.
Jung, G.-D., Yang, J.-Y., Song, E.-S., Park, J.-W., 2001. Stimulation of melanogenesis by glycyrrhizin in B16 melanoma cells. Exp. Mol. Med. 33(3), 131-135.
Kamra, M., Diwan, A., 2017. Liposomes in dermatological diseases. J. Appl. Pharm. Res. 2017(2), 01-08.
Khaitan, B.K., Sindhuja, T., 2022. Autoimmunity in vitiligo: Therapeutic implications and opportunities. Autoimmun. Rev. 21(1).
Khan, A., Qadir, A., Ali, F., Aqil, M., 2021. Phytoconstituents based nanomedicines for the management of psoriasis. J. Drug Deliv. Sci. Technol. 64, 102663.
Kim, E., Choi, S., Kim, G., 2018. Pharmaceutical Composition for Preventing or Treating Vitiligo Comprising Extract of Ricinus communis as an Active Ingredient. Patent No KR20200048305A.
Kim, E., Shin, J., Park, S., 2011. Composition comprising extracts of Longanae arillus for prevention and treatment of vitiligo. Patent No KR101349746B1.
Kim, H., Won-seok, G., Daejin, P., Nok-hyeon, P., Pil-jun S., 2010. Composition for preventing and treatmenting gray hair and leukoplakia containing Pueraria genus plant extracts or puerarin. Patent No KR20110100393A.
King, S., 2012. Plant-source anti-leucoderma compound spray. Patent No CN103655739A. Kopera, D., 1997. Historical aspects and definition of vitiligo. Clin. Dermatol. 15(6), 841-843.
Lawrence, M.J., Rees, G.D., 2000. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 45(1), 89-121.
Lai, Y., Feng, Q., Zhang, R., Shang, J., Zhong, H., 2021. The great capacity on promoting melanogenesis of three compatible components in Vernonia anthelmintica (L.) Willd. Int. J. Mol. Sci. 22(8), 4073.
Lee, D.Y., Kim, C.R., Lee, J.H., 2010. Recent onset vitiligo on acral areas treated with phototherapy: Need of early treatment. Photodermatol. Photoimmunol. Photomed. 26(5), 266-268.
Li, W., 2016. External Preparation for Treating Vitiligo and Preparation Method Thereof. Patent No CN106421249A.
Li, X.-S., Tang, X.-Y., Su, W., Li, X., 2020. Vitexin protects melanocytes from oxidative stress via activating MAPK-Nrf2/ARE pathway. Immunopharmacol. Immunotoxicol. 42(6), 594-603.
Lu, Shuai., Lu, Haijun., 2016. Traditional Chinese Medicine Liniment for Treating Leukoderma. Patent No CN105616536A.
Mahmoud, B.H., Hexsel, C.L., Hamzavi, I.H., 2008. An update on new and emerging options for the treatment of vitiligo. Skin Therapy Lett. 13(2), 1-6.
Makeshwar, K.B., Wasankar, S.R., 2013. Niosome: A novel drug delivery system. Asian. J. Pharm. Res. 3(1), 16-20.
Manosroi, J., Khositsuntiwong, N., Manosroi, W., Götz, F., Werner, R.G., Manosroi, A., 2010. Enhancement of transdermal absorption, gene expression and stability of tyrosinase plasmid (pMEL34)-loaded elastic cationic niosomes: Potential application in vitiligo treatment. J. Pharm. Sci. 99(8), 3533-3541.
Manosroi, J., Khositsuntiwong, N., Gö Tz, F., Werner, R.G., Manosroi, W., Manosroi, A., 2012. Potent melanin production enhancement of human tyrosinase gene by Tat and an entrapment in elastic cationic niosomes: Potential application in vitiligo gene. Chem. Biol. Drug. Des. 80(6), 953-960.
Min, Y., 2018. Composition for Alleviating Vitiligo Symptoms and Preparation Method Thereof. Patent No WO2020032297A1.
Mir-Palomo, S., Nácher, A., Busó, M.O.V., Caddeo, C., Manca, M.L., Manconi, M., Díez-Sales, O., 2019. Baicalin and berberine ultradeformable vesicles as potential adjuvant in vitiligo therapy. Colloids Surf. B. 175, 654-662.
Mouhid, L., Corzo-Martínez, M., Torres, C., Vázquez, L., Reglero, G., Fornari, T., Ramírez De Molina, A., 2017. Improving in vivo efficacy of bioactive molecules: An overview of potentially antitumor phytochemicals and currently available lipid-based delivery systems. J. Oncol. 2017, 34.
Nandure, H.P., Puranik, P., Giram, P., Lone, V., 2013. Ethosome: A novel drug carrier. Int. J. Pharm. Res. Allied Sci. 2(3),18-30.
Nicholas P., Peter P., 2021. Methods and Systems for Treating Vitiligo Using Phloroglucinol and Related Compositions. Patent No US20210260001.
Ongenae, K., van Geel, N., de Schepper, S., Naeyaert, J.M., 2005. Effect of vitiligo on self-reported health-related quality of life. Br. J. Dermatol. 152(6), 1165-1172.
Pang, Y., Wu, S., He, Y., Nian, Q., Lei, J., Yao, Y., Guo, J., Zeng, J., 2021. Plant-derived compounds as promising therapeutics for vitiligo. Front. Pharmacol. 12,1909.
Park, W.-S., Kwon, O., Yoon, T.-J., Chung, J.H., 2014. Anti-graying effect of the extract of Pueraria thunbergiana via upregulation of cAMP/MITF-M signaling pathway. J. Dermatol. Sci. 75(2), 153-155.
Parsad, D., Dogra, S., Kanwar, A.J., 2003. Quality of life in patients with vitiligo. Health Qual. Life. Outcomes. 1(1), 1-3.
Patel, D., Sherasiya, Z., Patel, K., 2019. Formulation and evaluation of topical calcineurin inhibitor loaded transfersomal drug delivery for vitiligo. J. Drug. Deliv. Ther. 9(2-s), 88-91.
Patel, H.K., Barot, B.S., Parejiya, P.B., Shelat, P.K., Shukla, A., 2013. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: Ex vivo permeation and skin irritation studies. Colloids Surf. B. 102, 86-94.
Peart, J.M., Kovarik, C., 2015. Direct-to-patient teledermatology practices. J. Am. Acad. Dermatol. 72(5), 907-909.
Pejin, B., Iodice, C., Tommonaro, G., de Rosa, S., 2008. Synthesis and biological activities of thio-avarol derivatives. J. Nat. Prod. 71(11), 1850-1853.
Rajan, R., Jose, S., Mukund, V.B., Vasudevan, D.T., 2011. Transferosomes-A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Rev. 2(3), 138.
Rezaei, N., Gavalas, N.G., Weetman, A.P., Kemp, E.H., 2007. Autoimmunity as an aetiological factor in vitiligo. J. Eur. Acad. Dermatol. 21(7), 865-876.
Rodrigues, M., Ezzedine, K., Hamzavi, I., Pandya, A.G., Harris, J.E., 2017a. Current and emerging treatments for vitiligo. J. Am. Acad. Dermatol. 77(1), 17-29.
Rodrigues, M., Ezzedine, K., Hamzavi, I., Pandya, A.G., Harris, J.E., 2017b. New discoveries in the pathogenesis and classification of vitiligo. J. Am. Acad. Dermatol. 77(1), 1-13.
Rubin, C.B., Kovarik, C.L., 2015. The nuts and bolts of teledermatology: Preventing fragmented care. J. Am. Acad. Dermatol. 73(5), 886-888.
Sanjana, A., Ahmed, M.G., BH, J.G., 2022. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo. Mater. Today. Proc. 50, 197-205.
Sehgal, V.N., Srivastava, G., 2007. Vitiligo: Compendium of clinico-epidemiological features. Indian. J. Dermatol. Venereol. Leprol. 73(3), 149-156.
Shadab, M., Shamsi, S., 2020. Original research article (experimental): Design and development of Unani emulgel for vitiligo. J. Ayurveda. Integr. Med. 11(3), 199-205.
Shafiq, S., Shakeel, F., Talegaonkar, S., Ahmad, F.J., Khar, R.K., Ali, M., 2007. Design and development of oral oil in water ramipril nanoemulsion formulation: In vitro and in vivo assessment. J. Biomed. Nanotech. 3(1), 28-44.
Shivasaraun, U.V., Sureshkumar, R., Karthika, C., Puttappa, N., 2018. Flavonoids as adjuvant in psoralen based photochemotherapy in the management of vitiligo/leucoderma. Med. Hypotheses. 121, 26-30
Shon, M.-S., Kim, R.-H., Kwon, O.J., Roh, S.-S., Kim, G.-N., 2016. Beneficial role and function of fisetin in skin health via regulation of the CCN2/TGF-β signaling pathway. Food Sci. Biotechnol. 25(S1), 133-141.
Singh, D., Pradhan, M., Shrivastava, S., Murthy, S.N., Singh, M.R., 2016. Skin Autoimmune Disorders: Lipid Biopolymers and Colloidal Delivery Systems for Topical Delivery. In Nanobiomaterials in Galenic Formulations and Cosmetics. William Andrew Publishing, pp. 257-296.
Sinico, C., Valenti, D., Manconi, M., Lai, F., Fadda, A.M., 2006. Cutaneous delivery of 8-methoxypsoralen from liposomal and niosomal carriers. J. Drug. Deliv. Sci. Technol. 16(2), 115-120.
Speeckaert, R., Speeckaert, M.M., Van Geel, N., 2015. Why treatments do(n’t) work in vitiligo: An autoinflammatory perspective. Autoimmun. Rev. 14(4), 332-340.
Spritz, R.A., 2012. Six decades of vitiligo genetics: Genome-wide studies provide insights into autoimmune pathogenesis. J. Investig. Dermatol. 132(2), 268-273.
Spritz, R.A., Andersen, G.H.L., 2017. Genetics of vitiligo. Dermatol. Clin. 35(2), 245-255.
Sun, M.C., Xu, X.L., Lou, X.Z., Du, Y.Z., 2020. Recent progress and future directions: The nano-drug delivery system for the treatment of vitiligo. Int. J. Nanomedicine. 15, 3267-3279.
Takekoshi, S., Nagata, H., Kitatani, K., 2014. Flavonoids enhance melanogenesis in human melanoma cells. Tokai J. Exp. Clin. Med. 39(3), 116-121.
Teng, H., Zhao, X., Huang, Z., Mei, Z., 2018. A Kind of Traditional Chinese Medicine for External Application and Preparation Method Thereof for Treating Leucoderma. Patent No CN108714167A.
Tommonaro, G., García-Font, N., Vitale, R.M., Pejin, B., Iodice, C., Cañadas, S., Marco-Contelles, J., Oset-Gasque, M.J., 2016. Avarol derivatives as competitive AChE inhibitors, non-hepatotoxic and neuroprotective agents for Alzheimer’s disease. Eur. J. Med. Chem. 122, 326-338.
Tong, L., Gao, W., 2016. One Treats Leucodermic Chinese Medicine Composition and Preparation of. Patent No CN106074778A.
Tripathi, R.K., Flanders, D.J., Young, T.L., Oetting, W.S., Ramaiah, A., King, R.A., Boissy, R.E., Nordlund, J.J., 1999. Microphthalmia-associated transcription factor (MITF) locus lacks linkage to human vitiligo or osteopetrosis: An evaluation. Pigment Cell Res. 12(3), 187-192.
Trucillo, P., Campardelli, R., Reverchon, E., 2020. Liposomes: From bangham to supercritical fluids. Processes 8(9), 1022. Vinod, K.R., Anbazhagan, S., Kumar, M.S., Sandhya, S., Banji, D., Rani, A.P., 2012. Developing ultra deformable vesicular transportation of a bioactive alkaloid in pursuit of vitiligo therapy. Asian Pac. J. Trop. Med. 2(4), 301-306. Yang, B., Yang, Q., Yang, X., Yan, H.-B., Lu, Q.-P., 2016. Hyperoside protects human primary melanocytes against H2O2-induced oxidative damage. Mol. Med. Rep. 13(6), 4613-4619.
Yu, B., 2014. Traditional Chinese Medicine for Treating Leucoderma. Patent No CN103893558A.
Zhao, L., Wang, Y., Zhai, Y., Wang, Z., Liu, J., Zhai, G., 2014. Ropivacaine loaded microemulsion and micro emulsion-based gel for transdermal delivery: Preparation, optimization, and evaluation. Int. J. Pharm. 477(1-2), 47-56. Zhou, Y. X., Zhang, R. Q., Rahman, K., Cao, Z. X., Zhang, H., Peng, C., 2019. Diverse pharmacological activities and potential medicinal benefits of geniposide. Evid. Based Complement. Alternat Med. 2019, 4925682.