Chemical composition of Leplaea mayombensis (Pellegrin) Staner
الموضوعات :Djeukeu Charlie 1 , Hermine Laure Djomkam Maza 2 , Kenmogne Ariane 3 , Sewald Norbert 4 , Wansi Duplex 5 , Vardamides Catherine 6
1 - Department of Chemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
2 - Department of Chemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
3 - Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33501 Bielefeld, Germany
4 - Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33501 Bielefeld, Germany
5 - Department of Chemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
6 - Department of Chemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
الکلمات المفتاحية: Minimum inhibitory concentration, Antibacterial activity, <i>Leplaea mayombensis</i>, coumarinolignan,
ملخص المقالة :
One new coumarinolignan, cleomiscosin F (1) along with ten known compounds namely 3,4-secotirucalla-4(28),7,24-trien-21-hydroxy-21,23-epoxy-3-oic acid (2), 3,4-secotirucalla-4(28),7,24-trien-3,21-dioic acid (3),ceramid A (4),ceramid B (5), mayombensin (6),aridanin (7), stigmasterol and β-sitosterol and their glucosides were isolated from the seeds and roots of Leplaea mayombensis (Meliaceae).Thestructures of the compounds were elucidated based on the interpretation of their spectroscopic data. Some of the isolated compounds (3, 4 and 5) were tested in vitro against bacteria strains Escherichia coli, Bacillus subtilis, Pseudomonas agarici, and Micrococcus luteus. Compound 3 displayed good activity against Bacillus subtilis, Micrococcus luteus, and Pseudomonas agarici with MIC values of 1.7, 2.3 and 9.8µM, respectively; while compound 4 showed significant activity against Micrococcus luteus with MIC value of 11.9µM.
Akinniyi, J.A., Connolly, J.D., Rycroft, D.S., Sondengam, B.L., Ifeadike, N.P., 1980. Tetranortriterpenoids and related compounds. Part 25. Two 3,4-secotirucallane derivates and 2’-hydroxyrohitukin from the bark of Guarea cedrata. Can. J. Chem. 58, 1865-1868.
Chaturvedula, V.S.P., Prakash, I., 2012. Isolation of stigmasterol and β-sitosterol from the dichloromethane extract of Rubus suavissimus. Int. Curr. Pharm. J. 1(9), 239-242.
CLSI (Ed.), Performance standards for antimicrobial susceptibility testing, 27th ed., Clinical and Laboratory Standards Institute, Wayne, PA, 2017 CLSI supplement M100.
Cos, P., Vlietinck, A.J., Berghe, D.V., Maes, L., 2006. Antiinfective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 106, 290-302.
Djeukeu, C., Tala F.M., Mvot, A. C., Azebaze, G.B.A., Kamdem, W.A.F., Wansi, J.D., Vardamides, J.C., Laatsch, H., 2017. Mayombensin, a new azadirachtin i derivative with unusual structure from Guarea mayombensis. Planta Med. Int. Open 4, 104-107
Feumo, H.M.F., Mvot Akak, C., Feussi, T.M., Azebaze, A.G.B., Vardamides, J.C., Laatch, H., 2016. Conocarpol, a new cycloartane triterpenoid from Diospyros Conocarpa. Z. Naturforsch. 71(9)b, 935-940.
Fonge, B., Egbe, E., Fongod, A., Focho, D., Tchetcha, D., Nkembi, L., Tacham, W. 2012. Ethnobotany survey and uses of plants in the Lewoh-Lebang communities in the Lebialem highlands, South West Region, Cameroon. J. Med. Plants Res. 6, 855-865.
Furlan, M., Lopes, M.N., Fernandes, J.B., Pirani, J.R., 1996. Diterpenes from Guarea trichilioides. Phytochemistry 41(4), 1159-1161.
Garcez, F.R., Nunez, C.V., Garcez, W.S., Almeida, R.M., Roque, N.F., 1998. Sesquiterpenes, limonoids and coumarins from the wood bark of Guarea guidonia. Planta Med. 64(1), 79-80.
Hernandez, V., De Leo, M., Cotugno, R., Braca, A., De Tommasi, N., Severino, L., 2018. New tirucallane-type triterpenoids from Guarea Guidonia. Planta Med. 84(9-10), 716-720.
John, A., Connolly, D., David, S., Rycroft, B., Lucas, S., Patience, I., 1980. Tetranortriterpenoids and related compounds. Part 25. Two 3,4-secotirucallane derivatives and 2’-hydroxyrohitukin from the bark of Guarea cedrata (Meliaceae). Can J. Chem. 1865.
Khatun, M., Billah, M., Quader, M., 2012. Sterols and sterol glucosides from Phyllanthus species. Dhaka Univ. J. Sci. 60(1), 5-10.
Koenen, J.M.E.; de Wilde, J.F.E.J., 2012. A taxonomic revision of the reinstated genus Leplaea and the newly recognized genus Neoguarea (Meliaceae, Sapindales): the exclusion of Guarea from Africa. Plant Ecol. Evol. 145, 209-241.
Kumar, S., Ray, A.B., Konno, C., Oshima, Y., Hikino, H., 1988. Cleomiscosin D, a coumarino-lignan from seeds of Cleome viscosa. Phytochemistry 27(2), 636-638.
Luo, X.D., Wu, S.H., Ma, Y.B., Wu, D.G., 2000. Tirucallane triterpenoids from Dysoxylum hainanense. Phytochemistry 54(8), 801-805.
Mambou, C.S., Nono, N.R., Chouna, R., Tamokou, J.D.D., Nkeng-Efouet-Alango, P., Sewald, N., 2018. Antibacterial secotirucallane triterpenes from the stem bark of Pseudocedrela kotschyi. Z. Naturforsch. 73(5-6)c, 241-246.
Moutoo, B.S., Jativa, C., Tinto, W.F., Reynolds, W.F., McLean, S., 1992. Ecuadorin, a novel tetranortriterpenoid of Guarea kunthiana: structure elucidation by 2D-NMR spectroscopy. Can. J. Chem. 70, 1260-1264.
Mulholland, D.A, Osborne, R., Roberts S.L., Taylor, D.A.H., 1994. Limonoids and triterpenoids acids from the bark of Entandrophragma delevoyi. Phytochemistry 37(5), 1417-1420.
Mulholland, D., Parel, B., Coombes, P., 2000. The chemistry of the Meliaceae and ptaerixylaceae of Southern and Eastern Africa and Madagascar. Curr. Org. Chem. 1011-1054.
Pereira, C., Júnior, C.B.B., Kuster, R.M., Simas, N.K., Sakuragui, C.M., Porzel, A., Wessjohann, L., 2012. Flavonoids and Neolignan glucoside from Guarea macrophylla. Quim. Nova 35, 1123-1126.
Rakesh, R., Mahendra, S., 2009. Coumarinolignans from the Seeds of Annona squamosa Linn. E-J. Chem. 6(2), 518-522.
Ray, A.B., Chattopadhyay, S.K., Konno, C., Hikino, H., 1980. Structure of cleomiscosin A, a coumarino- lignoid of Cleome viscosa seeds. Tetrahedron Lett. 21, 4477-4480.
Sidjui, S.L., Tchangoue, N. A.Y., Radhakrishman, S., Karthiga, P., Djomgoue, P., Toghueo, K.M.R., Famen, N.C.L., Annadurai, G., Folefoc, N.G., 2015. Preliminary in vitro antimicrobial screening of chemical constituents isolated from the root of Lepleae mayombensis (Meliaceae). J. Appl. Pharm. Sci. 5(12), 35-41.
Shultes, R.E., Raffaud, R.F., 1990. The Healing Forest: Medicinal and Toxic Plants of the North West Amazonia. Dioscorides Press, Portland, USA.
Wouamba, N.S.C., Happi, M.G., Lenta, N.B., Sewald, N., Kouam, F.S., 2020. Vernoguinamide: a new ceramide and other compounds from the root of Vernonia guineensis Benth. and their chemophenetic significance. Biochem. Syst. Ecol. 88, 1-5.