Phytochemicals in leaves and extracts of the variety “Plovdiv 7” of Bulgarian oriental tobacco (Nicotiana tabacum L.)
الموضوعات :Venelina Popova 1 , Tanya Ivanova 2 , Albena Stoyanova 3 , Vasil Georgiev 4 , Tsveta Hristeva 5 , Violeta Nikolova 6 , Margarita Docheva 7 , Nikolay Nikolov 8 , Stanka Damianova 9
1 - University of Food Technologies, Department of Tobacco, Sugar, Vegetable and Essential Oils, Plovdiv, Bulgaria
2 - University of Food Technologies, Department of Tobacco, Sugar, Vegetable and Essential Oils, Plovdiv, Bulgaria
3 - University of Food Technologies, Department of Tobacco, Sugar, Vegetable and Essential Oils, Plovdiv, Bulgaria
4 - Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
5 - Tobacco and Tobacco Products Institute, Markovo, Bulgaria
6 - Tobacco and Tobacco Products Institute, Markovo, Bulgaria
7 - Tobacco and Tobacco Products Institute, Markovo, Bulgaria
8 - Tobacco and Tobacco Products Institute, Markovo, Bulgaria
9 - Angel Kanchev University of Ruse, Razgrad Branch, Razgrad, Bulgaria
الکلمات المفتاحية: Essential oil, Triterpenes, <i>Nicotiana tabacum</i> L, Polyphenols, extracts,
ملخص المقالة :
This study aims to identify and analyze the non-volatile fraction (chemicals, polyphenols, phenolic acids, flavonoids, and triterpenes) and volatile fraction (essential oil and crude extracted aroma fractions) present in the leaves of “Plovdiv 7” oriental tobacco variety (N. tabacum L.). The results show that the nicotine content in leaves reaches 2.3% (DW) and chemicals such as betulin (2340.7 g/g), carnosic acid (845.2 µg/g) and ursolic acid (596.0 µg/g) (595.95 g/g ), are also present. In terms of free phenolic acids, chlorogenic acid (2545.0 g/g), ferulic acid (1561.8 g/g), and vanillic acid (4461.9 g/g) are found to be dominant. The flavonoid profile is dominated by myricetin (134.2 g/g), quercetin (334.1 g/g), apigenin (493.0 g/g) and luteolin (445.6 g/g). In the volatile fraction, nineteen volatile components were identified (92.3%) where (E)-phytol (53.4%) was the major compound followed by solanone (6.8%), cis-5-butyl-4-methyldihydrofuran-2(3H)-one (6.4%) and dihydro-β-ionone (5.2%). In addition, the antimicrobial activity of “Plovdiv 7” tobacco leaf aroma extracts (concrete and resinoid extract) are tested against nine microbial strains. The results show a weak antimicrobial activity against Staphylococcus aureus and Bacillus subtilis bacteria, whereas no activity is recorded for the other seven microbial strains tested.
Adams, R.P., 2001. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Allured Publishing, Carol Stream, IL.
Aidi Wannes, W., Mhamdi, B., Saidani Tounsi, M., Marzouk, B., 2017. Lipid and volatile composition of borage (Borago officinalis L.) leaf. Trends Phytochem. Res. 1(3), 143-148.
Akinpelu, D., Obuotor, E., 2000. Antibacterial activity of Nicotiana tabacum leaves. Fitoterapia 71(2), 199-200.
Alagić, S., Stančić, I., Palić, R., Stojanović, G., Lepojević, Z., 2006. Chemical composition of the supercritical CO2 extracts of the Yaka, Prilep and Otlija tobaccos. J. Essent. Oil Res. 18 (2), 185-188.
Alagić, S., Stančić, I., Palić, R., Stojanović, G., Nikolić, М., 2002. Chemical composition and antimicrobial activity of the essential oil of the oriental tobacco Yaka. J. Essent. Oil Res. 14(3), 230-232.
Arinushkina, E.B., 1970. Handbook for Chemical Analysis of Soil, 2nd Ed. Moscow University, Moscow, Russia.
Chen, Y., Jimmy Yu, Q., Li, X., Lao, Y., Liu, H. 2007. Extraction and HPLC characterization of chlorogenic acid from tobacco residuals. Sep. Sci. Technol. 42(15), 3481-4392.
Dagnon, S., Dimanov, D., 2007. Chemometric evaluation of the colour and smoke aroma in oriental tobaccos based on the polyphenol and valeric acid characteristics as influenced by the genotype. Bulg. J. Agric. Sci. 13, 459-466.
Dagnon, S., Tasheva, R., Stoilova, A., Christeva, D., Edreva, A., 2008. Evaluation of aroma in oriental tobaccos as based on valeric acid gas chromatography. Beiträge zur Tabakforschung/Contributions to Tobacco Research, 23(12), 115-120.
De Biasi, M., 2015. Nicotine Use in Mental Illness and Neurological Disorders, 1st Ed. Academic Press. 296p.
Docheva, M., Dagnon, S., 2015. Polyphenols in tobacco extracts obtained by macroporous resin. C. R. Acad. Bulg. Sci. 68(2), 183-190.
Frezza, C., Venditti, A., Serafini, I., Carassiti, A., Foddai, S., Bianco, A., Serafini, M., 2017. Phytochemical characteristics of Galeopsis ladanum subsp. angustifolia (Ehrh. ex Hoffm.) Gaudin collected in Abruzzo region (Central Italy) with chemotaxonomic and ethnopharmacological implications. Trends Phytochem. Res. 1(2), 61-68.
Georgiev, E., Stoyanova, A., 2006. A Guide for the Specialist in Aromatic Industry. UFT Academic Publishing House, Plovdiv, Bulgaria.
Gu, J., Zheng, X., Kong, B., 2010. Rapid determination of polyphenols in tobacco by MLC. Chromatographia 71(9-10), 769-774.
He, X.F., Hou, X.D., Ren, X., Guo, K., Li, X.Z., Yan, Z.Q., Du, Y.M., Zhang, Z.F., Qin, B., 2016. Two new cembranic diterpenoids from the flowers of Nicotiana tabacum L. Phytochem. Lett. 15, 238-244.
Huie, C. W., 2002. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem. 373(1-2), 23-30.
Ivanov, I., Vrancheva, R., Marchev, A., Petkova, N., Aneva, I., Denev, P., Georgiev, V., Pavlov, A., 2014. Antioxidant activities and phenolic compounds in Bulgarian Fumaria species. Int. J. Curr. Microbiol. App. Sci. 3(2), 296-306.
Kalinova, S., Yanev, M., 2015. Influence of soil herbicides on some technological indicators of oriental tobacco. Agricultural University -Plovdiv, Scientific works. 59(3), 65-70.
Kishore, K. 2014. Monograph of tobacco (Nicotiana tabacum). Indian J. Drugs. 2(1), 5-23.
Leffingwell, J., 1999. Basic Chemical Constituents of Tobacco Leaf and Differences Among Tobacco Types, in: Davis, D., Nielsen, M. (Eds.), Tobacco: Production, Chemistry and Technology. Blackwell Science, London, pp. 265-284.
Li, Zh., Wang, L., Yang, G., Shi, H., Jiang, C., Liu, W., Zhang, Y., 2003. Study on the determination of polyphenols in tobacco by HPLS coupled with ESI-MS after solid-phase extraction. J. Chrom. Sci. 41(1), 36-40.
Marchev, A., Georgiev, V., Badjakov, I., Kondakova, V., Nikolova, M., Pavlov, A., 2011a. Triterpenes production by rhizogenic callus of Salvia scabiosifolia Lam. obtained via Agrobacterium rhizogenes mediated genetic transformation. Biotechnol. Biotechnol. Equip., 25(Suppl 1), 30-33.
Marchev, A., Georgiev, V., Ivanov, I., Badjakov, I., Pavlov, A., 2011b. Two-phase temporary immersion system for Agrobacterium rhizogenes genetic transformation of sage (Salvia tomentosa Mill.). Biotechnol. Lett. 33(9), 1873-1878.
Mohammadhosseini, M., 2017. The ethnobotanical, phytochemical and pharmacological properties and medicinal applications of essential oils and extracts of different Ziziphora species. Ind. Crops Prod. 105, 164-192.
Mohammadhosseini, M., Sarker, S.D., Akbarzadeh, A., 2017. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 199, 257-315.
Murcute, A., Sahu, M., Mali, P., Rangari, V., 2010. Development and evaluation of formulations of microbial biotransformed extract of tobacco leaves for hair growth potential. Pharmacogn. Res. 2(5), 300-303.
Palic, R., Stojanovic, G., Alagic, S., Nikolic, M., Lepojevic,Z., 2002. Chemical composition and antimicrobial activity of the essential oil and CO2 extracts of the oriental tobacco Prilep. Flav. Fragr. J. 17(5), 323-326.
Popova, V., Denev, P., Ivanova, T., Stoyanova, A., Akterian, S., 2011. Phenolic acids in tobacco extraction products. Sci. Works Uni. Food Technol. 58(2), 54-59.
Popova, V., Gochev, V., Girova, T., Iliev, I., Ivanova, T., Stoyanova, A., 2015. Extraction products from tobacco -aroma and bioactive compounds and activities. Curr. Bioact. Compd. 11(1), 31-37.
Popova, V., Stoyanova, A., Omar, A., Bardarov, V., 2004. Composition of essential oil from tobacco grown in Iraq. Proceed. Second International Conference “Forest bioactive resources”, Habarovsk, 190-192.
Radulovic, N., Stojanovic, G., Palic, R., Alagic, S., 2006. Chemical composition of the ether and ethyl acetate extracts of Serbian selected tobacco types: Yaka, Prilep and Otlja. J. Essent. Oil Res.18(5), 562-565.
Rodgman, A., Perfetti, T., 2013. The Chemical Components of Tobacco and Tobacco Smoke. 2nd Ed., CRC Press, Boca Raton, Fl, USA.
Shang, S.Z., Xu, W.X., Li, L., Tang, J.G., Zhao, W., Lei, P., Miao, M.M., Sun, H.D., Pu, J.X., Chen, Y.K., Yang, G.Y., 2015. Antiviral isocoumarins from the roots and stems of Nicotiana tabacum. Phytochem. Lett. 11, 53-56.
Shang, S.Z., Zhao, W., Tang, J.G., Pu, J.X., Zhu, D.L., Yang, L., Sun, H.D., Yang, G.Y., Chen, Y.K., 2016. 14-Noreudesmane sesquiterpenes from leaves of Nicotiana tabacum and their antiviral activity. Phytochem. Lett. 17, 173-176.
Sheen, S.J., 1969. The distribution of polyphenols, chlorogenic acid oxidase and peroxidase in different plant parts of tobacco. Phytochemistry 8(10), 1839-1847.
Shen, Q.P., Xu, X.M., Liu, C.B., Zhao, W., Xiang, N.J., Chen, Y.K., Miao, M.M., Liu, Z.H., Yang, G.Y., 2016. Two new sesquiterpenes from the leaves of Nicotiana tabacum and their anti-tobacco mosaic virus activities. Nat. Prod. Res. 30(22), 2545-2550.
Snook, M.E., Fortson, P.J., Chortyk, O.T., 1981. Isolation and identification of phenolic acids from tobacco leaf. Beitr. Tabakforsch. 11(1), 19-26.
Stojanovic, G., Palic, R., Alagic, S., Zekovic, Z., 2000. Chemical composition and antimicrobial activity of the essential oil and CO2 extracts of semi-oriental tobacco Otlja. Flav. Fragr. J. 15(5), 335-338.
Stoyanova, A., Georgiev, E., Atanasova, T., 2007. A Handbook for Laboratory Practice in Essential Oils. Acad. Publ. House of the University of Food Technologies, Plovdiv.
Volcan Maia, D.S., Aranha, B.C., Chaves, F.C., da Silva, W.P., 2017. Antibacterial activity of Butia odorata Barb. Rodr. extracts. Trends Phytochem. Res. 1(3), 169-174.
Wang, H., Zhao, M., Yang, B., Jiang, Y., Rao, G., 2008. Identification of polyphenols in tobacco leaf and their antioxidant and antimicrobial activities. Food Chem. 107, 1399-1406.
Wang, J., Lu, D., Ling, X., Wang, J., Qiao, H., Ouyang, P., 2009. Simultaneous determination of four active components in tobacco wastes by LC. Chromatographia. 69(5-6), 561-566.
Wang, J., Lu, D., Zhao, H., Jiang, B., Wang, J., Ling, X., Chai, H., Ouyang, P., 2010. Discrimination and classification of tobacco wastes by identification and quantification of polyphenols with LC-MS/MS. J. Serb. Chem. Soc.75(7), 875-891.
Xia, J.J., Li, Y.D., Liu, X.M., Lu, Y., Wu, Y.Q., Qin, Y.H., 2016. A new benzofuran derivative from Nicotiana tabacum. J. Asian Nat. Prod. Res. 18(8), 779-783.
Xie, F., Yu, A., Cheng, Y., Qi, R., Li, Q., Liu, H., Zhang, S., 2010. Rapid separation and determination of five phenolic acids in tobacco by CE. Chromatographia 72(11-12), 1207-1212.
Yang, Z., Zhang, L., Li, G., Wang, Q., He, P., Fang, Y., 2010. Simultaneous analysis of sugar and polyphenols in tobacco by CZE with amperometric detection based on a Cu2O/MWCNT-COOH composite electrode. Chromatographia 71(5-6), 439-445.
Zaika, L.L., 1988. Spices and herbs: their antimicrobial activity and its determination. J. Food Saf. 9(2), 97-118.
Zhu, S., Lu, X., Xing, J., Zhang, S., Kong, H., Xu, G., Wu, C., 2005. Comparison of comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry and gas chromatography-mass spectrometry for the analysis of tobacco essential oils. Anal. Chim. Acta. 545, 224-231.