Effect of Inter-Cavity Spacing and Heat Treatment in Friction Stir Processing/Welding (FSP/FSW) Al7075 Composites Containing Al2O3 and Graphene Nanomaterials using Charpy Impact Test
الموضوعات :
Ali Hosseinzadeh
1
,
Mahmoud Shariati
2
,
Danial Ghahremani-moghadam
3
,
Mohammad Reza Maraki
4
1 - Department of Mechanical Engineering,
Ferdowsi University of Mashhad, Iran
2 - Department of Mechanical Engineering,
Ferdowsi University of Mashhad, Iran
3 - Department of Mechanical Engineering,
Quchan University of Technology
4 - Department of Material Engineering,
Birjand University of Technology
تاريخ الإرسال : 17 السبت , ربيع الأول, 1443
تاريخ التأكيد : 28 الخميس , شعبان, 1443
تاريخ الإصدار : 09 الأربعاء , شعبان, 1444
الکلمات المفتاحية:
Friction Stir Processing,
grapheme,
Charpy Impact Test,
Al2O3,
Nanoparticle,
Aluminum matrix composites,
ملخص المقالة :
In this research, the friction stir process by adding Al2O3 and graphene nanoparticles at two different distances have been investigated. Nanoparticles are inserted in cavities with a diameter of 2 mm and a depth of 3 mm. Nanoparticles of Al2O3, graphene, and equal compositions of Al2O3 and graphene, each with two cavity spacings of 8 and 10 mm, have been performed in six different groups of friction stir process. From each group, Six Charpy specimens were separated. Charpy impact test was performed on six samples, three of which were heat-treated after the friction stir process. Charpy impact test has shown that the specimens have higher fracture energy after heat treatment. Also, in all cases, the fracture energy at the distance between the two cavities are10 mm more than the distance of 8 mm, this is since nanoparticles do not accumulate at a more distance. Also, to observe the resulting microstructures using optical microscopy and scanning electron microscopy on the friction welding process and the fracture surface of Charpy impact specimens were performed. The results show that the nanoparticles are accumulated in some samples and well dispersed in the materials in others.
المصادر:
Wahid, M. A., Khan, Z. A., and Siddiquee, A. N., Review on Underwater Friction Stir Welding: A Variant of Friction Stir Welding with Great Potential of Improving Joint Properties Transactions of Nonferrous Metals Society of China, Vol. 28, No. 2, 2018, pp. 193-219.
Subramanya, P., Amar, M., Arun, S., Mervin, H., and Shrikantha, R., Friction Stir Welding of Aluminium Matrix Composites–A Review, MATEC Web Conf., Vol. 144, 2018, pp. 03002, http://dx.doi.org/10.1051/matecconf/201814403002
Murr, L., A Review of FSW Research on Dissimilar Metal and Alloy Systems, J. Mater. Eng. Perform., Vol. 19, No. 8, 2010, pp. 1071-1089, http://dx.doi.org/10.1007/s11665-010-9598-0.
Chen, T., Process Parameters Study on FSW Joint of Dissimilar Metals for Aluminum–Steel, J. Mater. Sci., Vol. 44, No. 10, 2009, pp. 2573-2580, http://dx.doi.org/10.1007/s10853-009-3336-8.
Carlone, P., Astarita, A., Palazzo, G. S., Paradiso, V., and Squillace, A., Microstructural Aspects in Al–Cu Dissimilar Joining by FSW, Int. J. Adv. Manuf. Technol., Vol. 79, No. 5-8, 2015, pp. 1109-1116, http://dx.doi.org/10.1007/s00170-015-6874-z.
Moghadam, D. G., Farhangdoost, K., Influence of Welding Parameters on Fracture Toughness and Fatigue Crack Growth Rate in Friction Stir Welded Nugget of 2024-T351 Aluminum Alloy Joints, Trans. Nonferrous Met. Soc. China, Vol. 26, No. 10, 2016, pp. 2567-2585, http://dx.doi.org/10.1016/S1003-6326(16)64383-2.
Zhao, J., Jiang, F., Jian, H., Wen, K., Jiang, L., and Chen, X., Comparative Investigation of Tungsten Inert Gas and Friction Stir Welding Characteristics of Al–Mg–Sc Alloy Plates, Mater. Des. Vol. 31, No. 1, 2010, pp. 306-311, http://dx.doi.org/10.1016/j.matdes.2009.06.012.
Cavaliere, P., Cabibbo, M., Panella, F., and Squillace, A., 2198 Al–Li Plates Joined by Friction Stir Welding: Mechanical and Microstructural Behavior, Mater. Des., Vol. 30, No. 9, 2009, pp. 3622 - 3631, http://dx.doi.org/10.1016/j.matdes.2009.02.021.
Thomas, W., Nicholas, E., Friction Stir Welding for The Transportation Industries, Mater. Des., Vol. 18, No. 4-6, 1997, pp. 269-273.
Ni, D., Chen, D., Wang, D., Xiao, B., and Ma, Z., Influence of Microstructural Evolution on Tensile Properties of Friction Stir Welded Joint of Rolled SiCp/AA2009-T351 Sheet, Mater. Des., Vol. 51, 2013, pp. 199-205, http://dx.doi.org/10.1016/j.matdes.2013.04.027.
Khodabakhshi, F., Gerlich, A., and Švec, P., Fabrication of a High Strength Ultra-Fine-Grained Al-Mg-SiC Nanocomposite by Multi-Step Friction-Stir Processing, Mater. Sci. Eng. A, Vol. 698, 2017, pp. 313-325, http://dx.doi.org/10.1016/j.msea.2017.05.065.
Khodabakhshi, F., Simchi, A., Kokabi, A., and Gerlich, A., Similar and Dissimilar Friction-Stir Welding of an PM Aluminum-Matrix Hybrid Nanocomposite and Commercial Pure Aluminum: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, Vol. 666, 2016, pp. 225-237, http://dx.doi.org/10.1016/j.msea.2016.04.078.
Ashjari, M., Asl, A. M., and Rouhi, S., Experimental Investigation on The Effect of Process Environment on The Mechanical Properties of AA5083/Al2O3 Nanocomposite Fabricated Via Friction Stir Processing, Mater. Sci. Eng. A, Vol. 645, 2015, pp. 40-46, http://dx.doi.org/10.1016/j.msea.2015.07.093.
Khodabakhshi, F., Yazdabadi, H. G., Kokabi A., and Simchi, A., Friction Stir Welding of a P/M Al–Al2O3 Nanocomposite: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, Vol. 585, 2013, pp. 222-232, http://dx.doi.org/10.1016/j.msea.2013.07.062.
Khodabakhshi, F., Simchi, A., Kokabi, A., Gerlich, A., Nosko, M., and Švec, P., Influence of Hard Inclusions on Microstructural Characteristics and Textural Components During Dissimilar Friction-Stir Welding of an PM Al–Al2O3–SiC Hybrid Nanocomposite with AA1050 Alloy, Sci. Technol. Weld. Join., Vol. 22, No. 5, 2017, pp. 412-427, http://dx.doi.org/10.1080/13621718.2016.1251714.
Narimani, M., Lotfi, B., and Sadeghian, Z., Evaluation of the Microstructure and Wear Behavior of AA6063-B4C/TiB2 Mono and Hybrid Composite Layers Produced by Friction Stir Processing, Surf. Coat. Tech.,Vol. 285, 2016, pp. 1-10,http://dx.doi.org/10.1016/j.surfcoat.2015.11.015.
Yuvaraj, N., Aravindan, S., Fabrication of Al5083/B4C Surface Composite by Friction Stir Processing and Its Tribological Characterization Journal of Materials Research and Technology, Vol. 4, No. 4, 2015, pp. 398-410, http://dx.doi.org/10.1016/j.jmrt.2015.02.006.
Rejil, C. M., Dinaharan, I., Vijay, S., and Murugan, N., Microstructure and Sliding Wear Behavior of AA6360/(TiC+ B4C) Hybrid Surface Composite Layer Synthesized by Friction Stir Processing on Aluminum Substrate, Mater. Sci. Eng. A, Vol. 552, 2012, pp. 336-344, http://dx.doi.org/10.1016/j.msea.2012.05.049.
Morisada, Y., Fujii, H., Nagaoka, T., Nogiand K., Fukusumi, M., Fullerene/A5083 Composites Fabricated by Material Flow During Friction Stir Processing, Compos., Part A Appl. Sci. Manuf., Vol. 38, No. 10, 2007, pp. 2097-2101, http://dx.doi.org/10.1016/j.compositesa.2007.07.004.
Ramesh, S., Sivasamy, A., Rhee, K., Park, S., and Hui, D., Preparation and Characterization of Maleimide–Polystyrene/SiO2–Al2O3 Hybrid Nanocomposites by An In-Situ Sol-Gel Process and Its Antimicrobial Activity, Compos., Part B Eng., Vol. 75, 2015, pp. 167-175, http://dx.doi.org/10.1016/j.compositesb.2015.01.040.
You, G., Ho, N., and Kao, P., In-Situ Formation of Al2O3 Nanoparticles During Friction Stir Processing of AlSiO2 Composite, Mater. Charact., Vol. 80, 2013, pp. 1-8, http://dx.doi.org/10.1016/j.matchar.2013.03.004.
Khodabakhshi, F., Gerlich, A., Simchi, A., and Kokabi, A., Hot Deformation Behavior of An Aluminum-Matrix Hybrid Nanocomposite Fabricated by Friction Stir Processing, Mater. Sci. Eng. A, Vol. 626, 2015, pp. 458-466, http://dx.doi.org/10.1016/j.msea.2014.12.110.
Khodabakhshi, F., Gerlich, A., Simchi, A., and Kokabi, A., Cryogenic Friction-Stir Processing of Ultrafine-Grained Al-Mg–TiO2 Nanocomposites, Mater. Sci. Eng. A, Vol. 620, 2015, pp. 471-482, http://dx.doi.org/10.1016/j.msea.2014.10.048.
Khodabakhshi, F., Simchi, A., Kokabi, A., Sadeghahmadi, M., and Gerlich, A., Reactive Friction Stir Processing of AA 5052–TiO2 Nanocomposite: Process–Microstructure–Mechanical Characteristics, Mater. Sci. Technol., Vol. 31, No. 4, 2015, pp. 426-435, http://dx.doi.org/10.1179/1743284714Y.0000000573.
Eskandari, H., Taheri, R., and Khodabakhshi, F., Friction-Stir Processing of an AA8026-TiB2-Al2O3 Hybrid Nanocomposite: Microstructural Developments and Mechanical Properties, Mater. Sci. Eng. A, Vol. 660, 2016, pp. 84-96, http://dx.doi.org/10.1016/j.msea.2016.02.081.
Khodabakhshi, F., Simchi, A., Kokabi, A., and Gerlich, A., Friction Stir Processing of An Aluminum-Magnesium Alloy with Pre-Placing Elemental Titanium Powder: In-Situ Formation of an Al3Tireinforced Nanocomposite and Materials Characterization, Mater.Charact., Vol. 108, 2015, pp. 102-114, http://dx.doi.org/10.1016/j.matchar.2015.08.016.
Liu, Z., Xiao, B., Wang, W., and Ma, Z., Singly Dispersed Carbon Nanotube/Aluminum Composites Fabricated by Powder Metallurgy Combined with Friction Stir Processing, Carbon, Vol. 50, No. 5, 2012, pp. 1843-1852, http://dx.doi.org/10.1016/j.carbon.2011.12.034.
Kim, W., Lee, T., and Han, S., Multi-Layer Graphene/Copper Composites: Preparation Using High-Ratio Differential Speed Rolling, Microstructure and Mechanical Properties, Carbon, vol. 69, 2014, pp. 55-65, http://dx.doi.org/10.1016/j.carbon.2013.11.058.
Kondoh, K., Fukuda, H., Umeda, J., Imai, H., and Fugetsu, B., Microstructural and Mechanical Behavior of Multi-Walled Carbon Nanotubes Reinforced Al–Mg–Si Alloy Composites in Aging Treatment, Carbon, Vol. 72, 2014, pp. 15-21, http://dx.doi.org/10.1016/j.carbon.2014.01.013.
Nandipati, G., Damera, N., and Nallu, R., Effect of Microstructural Changes on Mechanical Properties of Friction Stir Welded Nano SiC Reinforced AA6061 Composite, Int. J. Eng. Sci. Technol., Vol. 2, No. 11, 2010, pp. 6491-6499.
Butola, R., Choudhary, N., Kumar, R., Kumar Mouria, P., Zubair, M., Ranganath, M., and Singari, M., Measurement of Residual Stress on H13 Tool Steel During Machining for Fabrication of FSW/FSP Tool Pins, Materials Today: Proceedings, Vol. 43, No. 1, 2021, pp. 256-262.
Zhang, L., Zhong, H., Li, Sh., Zhao, H., Chen, J., and Qi, L., Microstructure, Mechanical Properties and Fatigue Crack Growth Behavior of Friction Stir Welded Joint of 6061-T6 Aluminum Alloy, International Journal of Fatigue, Vol. 135, 2020, 105556, ISSN 0142.
Duan, R. H., Xie, G. M., Luo, Z. A., Xue, P., Wang, C., Misra, R. D. K., and Wang, G. D., Microstructure, Crystallography, And Toughness in Nugget Zone of Friction Stir Welded High-Strength Pipeline Steel, Materials Science and Engineering: A, Vol. 791, 2020, 139620, ISSN 0921-5093.
Shaikh, A. S., Tahir, M. S., and Qureshi, M. K. A., Experimental Investigation of Mechanical Properties of Friction Stir Welded HDPE with Additions of Silicon Carbide, Silica, Nano-Alumina, And Graphite, Materials Science and Technology, Joining of Advanced and Specialty Materials, 2012, pp. 316-323.
Khan, M., Rehman, A., Aziz, T., Shahzad, M., Naveed, K., and Subhani, T., Effect of Inter-Cavity Spacing in Friction Stir Processed Al 5083 Composites Containing Carbon Nanotubes and Boron Carbide Particles, Journal of Materials Processing Technology, Vol. 253, 2018, pp. 72-85, ISSN 0924-0136.
Majidi, A., Hashemi, S. H., Study of Macroscopic Fracture Surface Characteristics of Spiral Welded API X65 Gas Transportation Pipeline Steel, Modares Mechanical Engineering, Vol. 17, No. 11, 2018, pp. 219-228.