Experimental Correlation Between Microstructure, Residual Stresses and Mechanical Properties of Friction Stir Welded 2024-T6 Aluminum Alloys
الموضوعات :
Majid Farhang
1
,
Mohammadreza Farahani
2
,
Mohammad Nazari
3
,
O. Sam Daliri
4
1 - School of Mechanical Engineering, College of Engineering,
University of Tehran, Tehran, Iran
2 - School of Mechanical Engineering,
College of Engineering, University of Tehran, Tehran, Iran
3 - School of Mechanical Engineering, College of Engineering,
University of Tehran, Tehran, Iran
4 - Department of Mechanical Engineering, National University of Ireland, Galway, H91 TK33, Ireland.
تاريخ الإرسال : 26 الإثنين , ربيع الأول, 1443
تاريخ التأكيد : 22 السبت , رمضان, 1443
تاريخ الإصدار : 05 الخميس , صفر, 1444
الکلمات المفتاحية:
Al 2024-T6,
Friction Stir Welding,
Mechanical Properties,
Residual stress,
ملخص المقالة :
Friction stir welding was performed on AA2024- T6 aluminum plates using different rotation and traverse speeds with the objective of improving the mechanical strength and microstructure properties. The influence of the traverse and rotation speed on the microstructures, mechanical properties and residual stresses of the welded Aluminum plates were investigated. By increasing the rotation speed, stirred zone grain size became larger. Besides, the homogenous second phase distribution was obtained. Furthermore, by increasing both rotational and traverse speeds, hardness of the thermo-mechanically affected zone and the stirred zone increase to base metal hardness. These welded plates that were fractured at advancing side have a maximum tensile strength equal to 71% of base plate strength which was obtained at 31.5 mm/min traverse speeds and 1120 rpm rotational speed. The longitudinal residual stress was diminished with decreasing of rotational speed by 1120 rpm at a constant traverse speed. In this conditions and by increasing the traverse speed by 31.5 mm/min, the maximum tensile strength was obtained as many as 48%. It was attributed to more plastic deformation and minimum grain size in the weld zone due to higher traverse speed.
المصادر:
El-Sayed, M. M., Shash, A., Abd-Rabou, M., and ElSherbiny, M. G., Welding and Processing of Metallic Materials by Using Friction Stir Technique: A Review, Journal of Advanced Joining Processes, 3, 2021, pp. 100059, DOI: 10.1016/j.jajp.2021.100059.
Kawashima, T., Sano, T., Hirose, A., Tsutsumi, S., Masaki, K., Arakawa, K., and et al., Femtosecond Laser Peening of Friction Stir Welded 7075-T73 Aluminum Alloys, Journal of Materials Processing Technology, 262, 2018, pp. 111-122, DOI: 10.1016/j.jmatprotec.2018.06.022.
Lee, W. B., Yeon, Y. M., and Jung, S. B., The Improvement of Mechanical Properties of Friction-Stir-Welded A356 Al Alloy, Materials Science and Engineering: A, 355, 2003, pp. 154-159, DOI: 10.1016/S0921-5093(03)00053-4.
Zhang, L., Zhong, H., Li, S., Zhao, H., Chen, J., and Qi, L., Microstructure, Mechanical Properties and Fatigue Crack Growth Behavior of Friction Stir Welded Joint of 6061-T6 Aluminum Alloy, International Journal of Fatigue, 135, 2020, pp. 105556, DOI: 10.1016/j.ijfatigue.2020.105556.
Peng, P., Wang, W., Jin, Y., Liu, Q., Zhang, T., Qiao, K., and et al., Experimental Investigation on Fatigue Crack Initiation and Propagation Mechanism of Friction Stir Lap Welded Dissimilar Joints of Magnesium and Aluminum Alloys, Materials Characterization, Vol. 177, 2021, pp. 111176, DOI: 10.1016/j.matchar.2021.111176.
Li, P., Chen, S., Dong, H., Ji, H., Li, Y., Guo, X., and et al., Interfacial Microstructure and Mechanical Properties of Dissimilar Aluminum/Steel Joint Fabricated Via Refilled Friction Stir Spot Welding, Journal of Manufacturing Processes, Vol. 49, 2020, pp. 385-396, DOI: 10.1016/j.jmapro.2019.09.047.
Anthony, P., Reynolds, W. D., and Lockwood, T. U., SeidelProcessing-Property Correlation in Friction Stir Welds, Materials Science Forum, Vol. 331-337, 2000, pp. 1719-1724, DOI: 10.4028/www.scientific.net/MSF.331-337.1719.
Shahmirzaloo, A., Farahani, M., and Farhang, M., Evaluation of Local Constitutive Properties of Al2024 Friction Stir-Welded Joints Using Digital Image Correlation Method, The Journal of Strain Analysis for Engineering Design, 2020, pp. 0309324720981201, DOI: 10.1177/0309324720981201.
Pabandi, H. K., Jashnani, H. R., and Paidar, M., Effect of Precipitation Hardening Heat Treatment on Mechanical and Microstructure Features of Dissimilar Friction Stir Welded AA2024-T6 and AA6061-T6 Alloys, Journal of Manufacturing Processes, Vol. 31, 2018 pp. 214-220, DOI: 1016/j.jmapro.2017.11.019.
Mehta, K. P., Patel, R., Vyas, H., Memon, S., and Vilaça, P., Repairing of Exit-Hole in Dissimilar Al-Mg Friction Stir Welding: Process and Microstructural Pattern. Manufacturing Letters, Vol. 23, 2020, pp. 67-70, DOI: 1016/j.mfglet.2020.01.002.
Çelik, S., Tolun, F. Effect of Double-Sided Friction Stir Welding on The Mechanical and Microstructural Characteristics of AA5754 Aluminium Alloy, Materials Testing, Vol. 63, No. 9, 2021, pp. 829-835, DOI: 1515/mt-2021-0009.
Hai, O. J., Conchita, K., Shigeo, S., Threadgill, P. L. Microstructure of Friction Stir Welded Joints in AA5182, Materials Science Forum, Vol. 331-337, 2000, pp. 1725-1730, DOI: 10.4028/www.scientific.net/MSF.331-337.1725.
Yang, T., Wang, K., Wang, W., Peng, P., Huang, L., Qiao, K., and et al., Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AlSi10Mg Aluminum Alloy Produced by Selective Laser Melting, JOM, Vol. 71, 2019, pp. 1737-1747, DOI: 10.1007/s11837-019-03343-9.
Khodabakhshi, F., Arab, S., Švec, P., and Gerlich, A., Fabrication of a New Al-Mg/graphene Nanocomposite by Multi-Pass Friction-Stir Processing: Dispersion, Microstructure, Stability, And Strengthening, Materials Characterization, Vol. 132, 2017, pp. 92-107, DOI: 1016/j.matchar.2017.08.009.
Narasimharaju, S., Sankunny, S., Microstructure and Fracture Behavior of Friction Stir Lap Welding of Dissimilar AA 6060-T5/Pure Copper, Engineering Solid Mechanics, Vol. 7, 2019, pp. 217-228, DOI: 10.5267/j.esm.2019.5.002.
Kundu, J., Singh, H., Friction Stir Welding of Dissimilar Al Alloys: Effect of Process Parameters on Mechanical Properties, Engineering Solid Mechanics, Vol. 4, 2016, pp. 125-132, DOI: 10.5267/j.esm.2016.2.001.
Shahani, A. R., Farrahi, A., Experimental Investigation and Numerical Modeling of The Fatigue Crack Growth in Friction Stir Spot Welding of Lap-Shear Specimen, International Journal of Fatigue, Vol. 125, 2019, pp. 520-529, DOI: 1016/j.ijfatigue.2019.04.026
Peel, M., Steuwer, A., Preuss, M., and Withers, P. J., Microstructure, Mechanical Properties and Residual Stresses as A Function of Welding Speed in Aluminium AA5083 Friction Stir Welds, Acta Materialia, Vol. 51, 2003, pp. 4791-4801, DOI: 10.1016/S1359-6454(03)00319-7.
Zhang, J., Upadhyay, P., Hovanski, Y., and Field, D. P., High-Speed Friction Stir Welding of AA7075-T6 Sheet: Microstructure, Mechanical Properties, Micro-Texture, and Thermal History, Metallurgical and Materials Transactions A, Vol. 49, 2018, pp. 210-222, DOI: 10.1007/s11661-017-4411-4.
Sutton, M. A., Yang, B., Reynolds, A. P., and Taylor, R., Microstructural Studies of Friction Stir Welds in 2024-T3 Aluminum, Materials Science and Engineering: A, Vol. 323, 2002, pp. 160-166, DOI: 10.1016/S0921-5093(01)01358-2.
Zhang, C., Cao, Y., Huang, G., Zeng, Q., Zhu, Y., Huang, X., and et al., Influence of Tool Rotational Speed on Local Microstructure, Mechanical and Corrosion Behavior of Dissimilar AA2024/7075 Joints Fabricated by Friction Stir Welding, Journal of Manufacturing Processes, Vol. 49, 2020, pp. 214-226, DOI: 10.1016/j.jmapro.2019.11.031.
Bussu, G., Irving, P. E., The Role of Residual Stress and Heat Affected Zone Properties on Fatigue Crack Propagation in Friction Stir Welded 2024-T351 Aluminium Joints, International Journal of Fatigue, Vol. 25, 2003, pp. 77-88, DOI: 10.1016/S0142-1123(02)00038-5.
Sowards, J. W., Gnäupel-Herold, T., McColskey, J. D., Pereira, V. F., and Ramirez, A. J., Characterization of Mechanical Properties, Fatigue-Crack Propagation, And Residual Stresses in A Microalloyed Pipeline-Steel Friction-Stir Weld, Materials & Design, Vol. 88, 2015, pp. 632-642, DOI: 10.1016/j.matdes.2015.09.049.
Ilangovan, M., Rajendra Boopathy, S., and Balasubramanian, V., Effect of Tool Pin Profile on Microstructure and Tensile Properties of Friction Stir Welded Dissimilar AA 6061–AA 5086 Aluminium Alloy Joints, Defence Technology, Vol. 11, 2015, pp. 174-184, DOI: 10.1016/j.dt.2015.01.004.
Farhang, M., Sam-Daliri, O., Farahani, M., and Vatani, A., Effect of Friction Stir Welding Parameters on The Residual Stress Distribution of Al-2024-T6 Alloy, Journal of Mechanical Engineering and Sciences, Vol. 15, No. 1, 2021, pp. 7684-7694, DOI: 15282/jmes.15.1.2021.06.0606.
Bachmann, M., Carstensen, J., Bergmann, L., Dos Santos, J. F., Wu, C. S., and Rethmeier, M., Numerical Simulation of Thermally Induced Residual Stresses in Friction Stir Welding of Aluminium Alloy 2024-T3 at Different Welding Speeds, The International Journal of Advanced Manufacturing Technology, Vol. 91, No. 1, 2017, pp. 1443-1452. DOI: 10.1007/s00170-016-9793-8.
Nazari, M., Besharati Givi, M. K., Farahani, M. R., Mollaei Milani, J., and Mohammad Zadeh, H., Investigation on the Effects of Using Nano-Size Al2O3 Powder on The Mechanical and Microstructural in The Multi-Passes Continuous Friction Stir Welding of the 2024-T6, Modares Mechanical Engineering, Vol. 14, No. 12, 2015, pp. 85-90, DOI: 1001.1.10275940.1393.14.12.1.2.
Sam Daliri, O., Farahani, M., Characterization of Stress Concentration in Thin Cylindrical Shells with Rectangular Cut-out Under Axial Pressure, International Journal of Advanced Design and Manufacturing Technology, Vol. 2, 2017, pp. 133-141.
Sam-Daliri, O., Farahani, M., and Farhang, M., A Combined Numerical and Statistical Analysis for Prediction of Critical Buckling Load of The Cylindrical Shell with Rectangular Cutout, Engineering Solid Mechanics, Vol. 7, No. 1, 2019, pp. 35-46.
Elangovan, K., Balasubramanian, V., and Valliappan, M., Effect of Tool Pin Profile and Tool Rotational Speed on Mechanical Properties of Friction Stir Welded AA6061 Aluminium Alloy, Materials and Manufacturing Processes, Vol. 23, No. 3, 2008, pp. 251-260, DOI: 10.1080/10426910701860723.
Krishna, M., Udaiyakumar, K., Kumar, D. M., and Ali, H. M., Analysis on Effect of Using Different Tool Pin Profile and Mechanical Properties by Friction Stir Welding on Dissimilar Aluminium Alloys Al6061 and Al7075, in IOP Conference Series: Materials Science and Engineering, 2018, pp. 012099, DOI: 10.1088/1757-899X/402/1/012099.
Trimble, D., O’Donnell, G. E., and Monaghan, J., Characterisation of Tool Shape and Rotational Speed for Increased Speed During Friction Stir Welding of AA2024-T3, Journal of Manufacturing Processes, Vol. 17, 2015, pp. 141-150, DOI: 10.1016/j.jmapro.2014.08.007.
Abd El-Hafez, H., Mechanical Properties and Welding Power of Friction Stirred AA2024-T35 Joints, Journal of Materials Engineering and Performance, Vol. 20, 2011, pp. 839-845, DOI: 10.1007/s11665-010-9709-y.
Li, H., Yang, S., Zhang, S., Zhang, B., Jiang, Z., Feng, H., and et al., Microstructure Evolution and Mechanical Properties of Friction Stir Welding Super-Austenitic Stainless Steel S32654, Materials & Design, Vol. 118, 2017, pp. 207-217, DOI: 10.1016/j.matdes.2017.01.034.
Akbari, D., Farahani, M., and Soltani, N., Effects of the Weld Groove Shape and Geometry on Residual Stresses in Dissimilar Butt-Welded Pipes, The Journal of Strain Analysis for Engineering Design, Vol. 47, 2012, pp. 73-82, DOI: 1177/0309324711434681
Sattari-Far, I., Farahani, M. R., Effect of the Weld Groove Shape and Pass Number on Residual Stresses in Butt-Welded Pipes, International Journal of Pressure Vessels and Piping, Vol. 86, No. 11, 2009, pp. 723-731, DOI: 1016/j.ijpvp.2009.07.007.
Sabokrouh, M., Farahani, M., Experimental Study of The Residual Stresses in Girth Weld of Natural Gas Transmission Pipeline, Journal of Applied and Computational Mechanics, Vol. 5, No. 2, 2019, pp.199-206, DOI: 10.22055/JACM.2018.25756.1294.
Sam-Daliri, O., Faller, L. M., Farahani, M., Roshanghias, A., Araee, A., Baniassadi, and et al., Impedance Analysis for Condition Monitoring of Single Lap CNT-Epoxy Adhesive Joint, International Journal of Adhesion and Adhesives, Vol. 88, 2019, pp. 59-65, DOI: 1016/j.ijadhadh.2018.11.003.
Sam-Daliri, O., Farahani, M., Faller, L. M., and Zangl, H., Structural Health Monitoring of Defective Single Lap Adhesive Joints Using Graphene Nanoplatelets, Journal of Manufacturing Processes, Vol. 55, 2020, pp. 119-130, DOI: 1016/j.jmapro.2020.03.063.
Stetco, C., Sam-Daliri, O., Faller, L. M., and Zangl, H., Piezocapacitive Sensing for Structural Health Monitoring in Adhesive Joints, 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 2019, pp. 1-5, DOI: 10.1109/I2MTC.2019.8827065.
Sam-Daliri, O., Farahani, M., and Araei, A., Condition Monitoring of Crack Extension in The Reinforced Adhesive Joint by Carbon Nanotubes, Welding Technology Review, Vol. 91, No. 12, 2019, pp. 7-15, DOI: 26628/wtr.v91i12.1084.
Rhodes, C. G., Mahoney, M. W., Bingel, W. H., Spurling, R. A., and Bampton, C. C., Effects of Friction Stir Welding on Microstructure of 7075 Aluminum, Scripta Materialia, Vol. 36, 1997, pp. 69-75, DOI: 10.1016/S1359-6462(96)00344-2.
Murr, L. E., Liu, G., and McClure, J. C., A TEM Study of Precipitation and Related Microstructures in Friction-Stir-Welded 6061 Aluminium, Journal of Materials Science, Vol. 33, 1998, pp. 1243-1251, DOI:10.1023/A:1004385928163.
Hadavi, M. R., Touski, H. Y., Jafari, H., and Ghasemi, F. A., Effect of Friction Stir Processing on Microstructure, Mechanical Properties, and Corrosion Fatigue Behavior of AA5083-H111 Metal Inert Gas Welded Joint, Journal of Materials Engineering and Performance, 2021, pp. 1-10, DOI: 10.1007/s11665-021-05783-4.
Huang, K., Logé, R., A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Materials & Design, Vol. 111, 2016, pp. 548-574, DOI: 10.1016/j.matdes.2016.09.012.
El Rayes, M. M., Soliman, M. S., Abbas, A. T., Pimenov, D. Y., Erdakov, I. N., and Abdel-Mawla, M. M., Effect of Feed Rate in Fsw on The Mechanical and Microstructural Properties of AA5754 Joints, Advances in Materials Science and Engineering, Vol. 2019, 2019, pp. 1-12, DOI: DOI: 10.1155/2019/4156176.
El-Danaf, E. A., El-Rayes, M. M., and Soliman, M. S., Friction Stir Processing: An Effective Technique to Refine Grain Structure and Enhance Ductility, Materials & Design, Vol. 31, 2010, pp. 1231-1236, DOI: 10.1016/j.matdes.2009.09.025.
Lu, Y., Wang, J., Li, X., Chen, Y., Zhou, D., Zhou, G., et al., Effect of Pre-Deformation on The Microstructures and Properties of 2219 Aluminum Alloy During Aging Treatment, Journal of Alloys and Compounds, Vol. 699, 2017, pp. 1140-1145, 10.1016/S1003-6326(12)61733-6, DOI: 10.1016/j.jallcom.2016.12.006.
Borrego, L., Costa, J., Jesus, J., Loureiro, A., and Ferreira, J., Fatigue Life Improvement by Friction Stir Processing of 5083 Aluminium Alloy MIG Butt Welds, Theoretical and Applied Fracture Mechanics, Vol. 70, 2014, pp. 68-74, DOI: 10.1016/j.tafmec.2014.02.002.
Zamanpour, A., Farahani, M., Farhang, M., and Vafa, N., Experimental Study on the Effects of Harmonic Vibration on the Stress Relief of the Butt Welded AISI 1021 Pipes. Iranian Journal of Manufacturing Engineering, Vol. 7, No. 2, 2020, pp. 1-7, http://www.iranjme.ir/article_108087.html.
Enami, M., Farahani. M., and Farhang, M., Novel Study on Keyhole Less Friction Stir Spot Welding of Al 2024 Reinforced with Alumina Nanopowder, The International Journal of Advanced Manufacturing Technology, Vol. 101, No. 9, 2019, pp. 3093-3106, DOI: 10.1007/s00170-018-3142-z.
Farhang, M., Farahani. M., and Enami, M., Experimental Study on the Effects of Friction Stir Spot Welding Process Parameters on AL2024T3 Joint Strength. ADMT Journal, Vol. 14, No. 4, 2021, pp. 105-112,DOI:30495/ADMT.2021.1922979.1280.
Farhang, M., Farahani. M., and Nazari M., Incorporation of Al2O3 Powder for Improvement of The Mechanical and Metallurgical Properties of Multi-Passes Friction Stir Welding of Al Iranian Journal of Manufacturing Engineering, Vol. 8, No. 3, 2021, pp.35-46, http://www.iranjme.ir/article_133594.html?lang=en.
Zhai, M., Wu, C., and Su, H., Influence of Tool Tilt Angle on Heat Transfer and Material Flow in Friction Stir Welding, Journal of Manufacturing Processes, Vol. 59, 2020, pp. 98-112, DOI: 10.1016/j.jmapro.2020.09.038.