Experimental and Theoretical Study on One-pot, Synthesis of Some 4-Aryl-1,3,4,6,7,8-hexahydroquinazolin-2,5(1H,6H)-diones Derivatives (HHQs) using Nano K3AlF6
الموضوعات :Masoumeh Mehrabi 1 , Asadollah Farhadi 2 , Alireza Kiassat 3
1 - Department of Chemistry, Khuzestan Science and Research Branch, Islamic Azad University,
Ahvaz, Iran
Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
3
2 - Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
Petroleum University of Technology, Faculty of Science, Ahvaz, Iran
3 - Department of chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
Chemistry Department, College of Science, Shahid Chamran University, Ahvaz, Iran
الکلمات المفتاحية:
ملخص المقالة :
A one-pot three-component procedure has been developed for the synthesis of 4-Aryl-1,3,4,6,7,8-hexahydroquinazolin-2,5(1H,6H)-diones derivatives (HHQs) using urea, 1,3-cyclohexadione and aryl aldehydes in acetonitrile at room temperature and at the presence of catalytic amounts of Nano K3AlF6. Synthesis of these new Biginelli-type products (HHQs) requires a very mild reaction conditions. This reaction may be considered as a complementary to the classical Biginelli synthesis. A mechanism was proposed for this reaction. The zeta potential changes of K3AlF6, K3AlF6@benzaldehyde, K3AlF6@1,3-cyclohexadiones and K3AlF6@urea in acetonitrile related to this mechanism were reported. These products were characterized by FT-IR, UV/Vis, Mass,1HNMR and 13C NMR spectra. Nano catalyst was also characterized by FT-IR, XRD, XRF, SEM and TEM methods. This catalyst is easily prepared and also is stable, reusable and efficiently used under reaction conditions. The structures of synthesized molecules were studied using a density functional theoretical (DFT) method and second order perturbation theory analysis of Fock matrix with NBO basis. Furthermore, the solvation Gibbs energies and the electronic properties of these compounds in water and ethanol were studied.
[1]. N. Nakamichi, Y. Kawashita, M. Hayashi, J. Org. Lett., 4, 3955 (2002).
[2]. N. Nakamichi, Y. Kawashita, M. Hayashi, Synthesis,1015 (2004).
[3]. P. Biginelli, Gazz.Chim. Ital., 23, 360 (1893).
[4]. B. Jauk, T. Pernat, C.O. Kappe, Molecules, 5, 227 (2000).
[5]. V. K. Yadav, K. K. Kapoor, Tetrahedron Lett., 52, 3659 (1996).
[6]. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartulie, J. S. Beck,Nature, 359, 710-712
(1992).
[7]. A. Farhadi, T. Hamoule, M. A. Takassi, T. Arizavipour,Bulg. Chem. Comm., 47, 101 (2015).
[8]. M. Rimaz, J. Khalafy, H. Mousavi, Res. Chem. Int., 42, 8185 (2016).
[9]. Z. Benzekri, H. Serrar, S. Boukhris, A. Ouasri, A. Hassikou, A. Rhandour, Fr. Ukr. J. Chem.,
560 (2017).
[10]. J. M. Fraile, J. I. Garcia, J. A. Matoral, F. Figueras, Tetrahedron Lett., 37, 5995 (1996).
[11]. F. Hoffmann, M. Frӧba, Chem. Soc. Rev., 40, 608 (2011).
[12]. M. Soleymani, Curr. Org. Chem., 22, 890 (2018).
[13]. M. Mehrabi, A. Farhadi, A. kiasat, Int. J. Org. Chem.,7, 240 (2017).
[14]. J. Yamawaki, T. Ando, T. Hanafusa, Chem. Lett., 10, 1143 (1981).
[15]. A. Farhadi, M. A. Takassi, L. Hejazi, J. Iran. Chem. Commun., 5, 35 (2017).
[16]. A. Farhadi, M. A. Takassi, L. Hejazi, Z. Naturforsch, 68b, 51 (2013).
[17]. A. Farhadi, J. Noei, R. H. Aliyari, M. Albakhtiyari, M. A. Takassi, Res. Chem. Int, 42, 1401
(2016).
[18]. A. Farhadi, M. Ramyar, M. A. Takassi, Iran. Chem. Commun., 6, 266 (2018).
[19]. S. X. Wang, L. Ji-Tai, Y. Wen-Zhi, L. Tong-Shuang, Ultrason. Sonochem., 9, 159 (2002).
[20]. N. Schultz, G. Metreveli, M. Franzreb, F. H. Frimmel, C. Syldatk, Colloid Surface B., 66, 39
(2008).
[21]. K. Cai, M. Frant, J. Bossert, G. Hildebrand, K. Liefeith, K. D. Jandt, Colloid Surface B., 50, 1
(2006).
[22]. A. M. Abakumov, M. D. Rossell, A. M. Alekseeva, S. Yu. Vassiliev, S. N. Mudrezova, G. V.
Tendeloo, E. V. Antipov, J. Solid State Chem., 179, 421 (2006).
[23]. J. H. Clark, D. G. Cork, M. S. Robertson, Chem. Lett., 12, 1145 (1983).
[24]. S. Ghassamipour, A. R. Sardarian, J. Iran. Chem. Soc.,7, 237 (2010).
[25]. D. C. Young, John Wiley & Sons New-York, (2001).
[26]. G. Uray,P. Verdino,F. Belaj, C. O. Kappe, W. M. F. Fabian, J. Org. Chem.,66, 6685 (2001).
[27]. S. K. Rathwa, M. S. Vasava, M. N. Bhoi, M. A. Borad, H. D. Patel, Synth. Commun., 48, 963
(2018).
[28]. A. B. Sannigrahi, S. Scheiner, Theochem., 427, 79 (1998).
[29]. A. Farhadi, M. A. Takassi, P. Madmoli, J. Am. Sci., 8, 1024 (2012).
[30]. M. J. Frisch, G. W. Trucks, H. B. Schlegel and et.al., Gaussian, Inc., Wallingford CT, Gussian
(2009)
[31]. H. R Memarian, H. Sabzyan, A. Farhadi, Mont. Chem., 141, 1203 (2010).
[32]. A. Farhadi, M. A. Takassi, Front. Chem. China., 6, 142 (2011).
[33]. S. Subhashandrabose, R. Akhil, R. Krishnan, H. Saleem, R. Parameswari, Spectrochim. Acta
A., 77, 877 (2010).
[34]. A. R. Krishanan, H. Saleem, S. Subhashandrabose, N. Sundaraganesan, S. Sebastian,
Spetrochim. Acta A., 78, 582 (2011).
[35]. J. N. Liu, Z. R. Chen, S. F. Yuan, J. Zhejiang Uni. Sci. B., 6, 584 (2005).
[36]. N. Seif, A. Farhadi, R. Badri, A. R. Kiasat, Iran. J. Chem. Chem. Eng., 39, 21 (2020)
[37]. S. Sebastian, N. Sundaraganesan, Specrochim. Acta A., 75, 941 (2010).