بررسی فراوانی ژنهای اینتگرون کلاس 3، 2، 1 و بتالاکتامازهای وسیعالطیف bla-CTX-M، bla-SHV و bla-TEMدر باسیلهای گرم منفی جدا شده از بیمارستان آموزشی کودکان بندر عباس (1396)
الموضوعات :مهشید وحدانی 1 , نوشین خندان 2 , افسانه کرمستجی 3
1 - کارشناسی ارشد زیستشناسی- میکروبشناسی، گروه میکروبشناسی، دانشگاه آزاد اسلامی، واحد سیرجان، سیرجان، ایران
2 - استادیار، گروه میکروبشناسی، دانشگاه آزاد اسلامی، واحد سیرجان، سیرجان، ایران
3 - دانشیار، مرکز تحقیقات بیماریهای عفونی و گرمسیری؛ دانشگاه علوم پزشکی هرمزگان، بندرعباس، ایران
الکلمات المفتاحية: ژنهای بتالاکتاماز وسیعالطیف, CTX, SHV, PCR چندگانه, اینتگرون, TEM,
ملخص المقالة :
سابقه و هدف: باسیلهای گرم منفی پاتوژنهای مهم بیمارستانیاند که شیوع ژنهای بتالاکتاماز وسیعالطیف و اینتگرونها در آنها رو به افزایش است. لذا شناسایی این ژنهای مقاومت آنتی بیوتیکی به منظور جلوگیری از گسترش سویههای مقاوم، ضروری است. هدف این مطالعه بررسی فراوانی ژنهای اینتگرون کلاس 1،2،3 و بتالاکتامازهای وسیعالطیف bla-CTX-M ،bla-SHV و bla-TEM در باسیلهای گرم منفی جدا شده از بیمارستان آموزشی کودکان بندر عباس میباشد. مواد و روش کار: تعداد 60 سویه باسیل گرم منفی از نمونههای بالینی، جداسازی و با تستهای بیوشیمیایی شناسایی و الگوی مقاومت آنتیبیوتیکی آنها با روش انتشار در ژل تعیین شد. PCR چندگانه برای شناسایی ژنهای اینتگرون کلاس1،2،3 و از PCR به منظور شناسایی bla-CTX-M ،bla-SHV و bla-TEM استفاده شد. نتایج: بیشترین فراوانی سویهها مربوط به اشرشیاکلی،70% و بیشترین میزان مقاومت و حساسیت به ترتیب مربوط به سولفومتوکسازول 68% و جنتامایسین 75% بود. 37 سویه (7/61%) دارای ژن اینتگرون کلاس 1، و 19 سویه (7/26%)، دارای ژن اینتگرون کلاس 2میباشند. اینتگرون کلاس 3 در هیچ یک از سویهها مشاهده نشد. بیشترین فراوانی ژنهای کدکننده بتالاکتامازهای وسیعالطیف به ترتیب مربوط به ژن bla-CTX-M (40 مورد، 7/66%)، bla-TEM (19مورد، 7/31%) و bla-SHV (6 مورد، 10%) میباشد. نتیجهگیری: در مطالعه حاضر ارتباط معنیداری 05/0>P بین حضور ژنهای اینتگرون کلاس 2 و 1 و بتالاکتامازهای وسیعالطیف bla-CTX-M،bla-SHV و bla-TEM و مقاومت آنتیبیوتیکی مشاهده گردید. از اینرو شناسایی ژنهای مقاومت آنتیبیوتیکی و استفاده از روش درمانی مناسب بر پایه تعیین الگوی آنتیبیوگرام سویهها توصیه میگردد.
Zerr DM, Qin X, Oron AP, Adler AL, Wolter DJ, Berry JE, et al. Pediatric Infection and Intestinal Carriage Due to Extended-Spectrum-Cephalosporin-Resistant Enterobacteriaceae. Antimicrob Agents Ch. 2014; 58(7): 3997-4004.
Ivády B, Kenesei É, Tóth-Heyn P, Kertész G, Tárkányi K, Kassa C, et al. Factors influencing antimicrobial resistance and outcome of Gram-negative bloodstream infections in children. Infection. 2016; 44(3): 309-21.
Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev. 2005; 18(4): 657-86.
Dezfully NK, Heidari A. Natural bioactive compounds: antibiotics. J Fundam Appl Sci. 2016; 8(2): 674-84.
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm.Therapeut. 2015; 40(4): 277.
Diene SM, Rolain J-M. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2014; 20(9): 831-8.
Cambray G, Guerout A-M, Mazel D. Integrons. Annu Rev Genet. 2010; 44(1): 141-66.
Sun S, Zhang W, Mannervik B, Andersson DI. Evolution of broad-spectrum beta-lactam resistance in an engineered metallo-beta-lactamase. J Biol Chemi. 2013; 288(4): 2314-24
Pfeifer Y, Cullik A, Witte W. Resistance to Cephalosporins and Carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol. 2010; 300(6): 371-9.
Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and Extended Spectrum Beta-Lactamases: types, epidemiology and treatment. Saudi J Biol. Sci. 2015; 22(1): 90-101.
Cantón R, TM C. The CTX-M β-lactamase pandemic. Curr Opin Microbiol. 2006; 9(5): 466-75.
Villa L, Pezzella C, Tosini F, Visca P, Petrucca A, Carattoli A. Multiple-antibiotic resistance mediated by structurally related IncL/M plasmids carrying an Extended-Spectrum Beta-Lactamase gene and a class 1 integron. Antimicrob Agents Chemother. 2000; 44(10): 2911–2914.
Frank T, Gautier V, Talarmin A, Bercion R, Arlet G. Characterization of sulphonamide resistance genes and class 1 Integron gene cassettes in Enterobacteriaceae, Central African Republic (CAR). J Antimicrob Chem. 2007; 59(4): 742-5.
Kuihai W, Fengping W, Jingjing S, et al. Class 1 Integron gene cassettes in multidrug-resistant Gram-negative bacteria in southern China. Int J Antimicrob Agents. 2012; 40(3): 264-267.
Moammadi F, Arabestani MR, Safari M, Roshanaii G, Alikhani MY. Prevalence of class1, 2 and 3 integrons among extensive drug resistance Acinetobacter baumanii strains isolated from intensive care units in Hamadan, west province, Iran . Iran J Med Microbiol. 2014; 8(3): 8-14.
Hajiahmadi F, Safari N, Alijani P, Rabiei M, Masomian N, Arabestani MR. Assessment of the Prevalence of Class I and II Integrons of Escherichia coli and Klebsiella pneumoniae Isolates From Hospitals of Hamadan. Avicenna J Clin Med. 2016; 23(3):193-201.
Ardeshiri N, Nasrollahi M, Goudarzi H, Goudarzi M, Ghalavand Z, Dadashi M. The prevalence of Integron 1, 2 and 3 classes in Acinetobacter baumanii clinical isolates from Sari Hospitals, Iran. Res Med. 2017; 41(3): 217-225.
Murray PR, Rosenthal KS, Pfaller MA. Medical Microbiology. Elsevier Health Sciences; 2015, 8 th edition.
Biemer JJ. Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Ann Clin Lab Sci. 1973; 3(2): 135-40.
Clinical and Laboratory Standards Institute(CLSI). Performance standards for antimicrobial susceptibility testing. 27th ed. CLSI supplement M100. Wayne, Pa: CLSI. 2017.
Yazdi M, Nazemi A, Mirinargasi M, Khataminejad M, Sharifi S, Babaikochkaksaraei M. Prevalence of SHV/CTXM/TEM (ESBL) beta-lactamase resistance genes in Escherichia coli isolated from urinary tract infections in Tehran. Med Lab J. 2010; 4: 67-80.
Manyahi J, Tellevik MG, Ndugulile F, Moyo SJ, Langeland N, Blomberg B. Molecular characterization of cotrimoxazole resistance genes and their associated integrons in clinical isolates of Gram-negative bacteria from Tanzania. Microb. Drug Resist. 2017; 23(1): 37-43.
Sedighi M, Halajzadeh M, Ramazanzadeh R, Amirmozafari N, Heidary M, Pirouzi S. Molecular detection of β-lactamase and integron genes in clinical strains of Klebsiella pneumoniae by multiplex polymerase chain reaction. Rev Soc Bras Med Trop. 2017; 50(3): 321-328.
Derakhshan S, Najar Peerayeh S, Bakhshi B. Association between presence of virulence genes and antibiotic resistance in clinical Klebsiella Pneumoniae isolates. Laboratory medicine. 2016; 47(4): 306-11.
Agersø Y, Petersen A. The tetracycline resistance determinant Tet 39 and the sulphonamide resistance gene sulII are common among resistant Acinetobacter spp. isolated from integrated fish farms in Thailand. Journal of antimicrobial chemotherapy. 2006; 59(1): 23-7.
Zaniani FR, Meshkat Z, Nasab MN, Khaje-Karamadini M, Ghazvini K, Rezaee A, et al. The prevalence of TEM and SHV genes among extended-spectrum beta-lactamases producing Escherichia coli and Klebsiella pneumoniae. Iranian journal of basic medical sciences. 2012; 15(1): 654.
Shahbazi S, Karam MRA, Habibi M, Talebi A, Bouzari S. Distribution of extended-spectrum β-lactam, quinolone and carbapenem resistance genes, and genetic diversity among uropathogenic Escherichia coli isolates in Tehran, Iran. Journal of global antimicrobial resistance. 2018; 14: 118-25.
Poirel L, Pham J, Cabanne L, Gatus B, Bell S, Nordmann P. Carbapenem‐hydrolysing metallo‐β‐lactamases from Klebsiella pneumoniae and Escherichia coli isolated in Australia. Pathology. 2004; 36(4): 366-7.
_||_Zerr DM, Qin X, Oron AP, Adler AL, Wolter DJ, Berry JE, et al. Pediatric Infection and Intestinal Carriage Due to Extended-Spectrum-Cephalosporin-Resistant Enterobacteriaceae. Antimicrob Agents Ch. 2014; 58(7): 3997-4004.
Ivády B, Kenesei É, Tóth-Heyn P, Kertész G, Tárkányi K, Kassa C, et al. Factors influencing antimicrobial resistance and outcome of Gram-negative bloodstream infections in children. Infection. 2016; 44(3): 309-21.
Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev. 2005; 18(4): 657-86.
Dezfully NK, Heidari A. Natural bioactive compounds: antibiotics. J Fundam Appl Sci. 2016; 8(2): 674-84.
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm.Therapeut. 2015; 40(4): 277.
Diene SM, Rolain J-M. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2014; 20(9): 831-8.
Cambray G, Guerout A-M, Mazel D. Integrons. Annu Rev Genet. 2010; 44(1): 141-66.
Sun S, Zhang W, Mannervik B, Andersson DI. Evolution of broad-spectrum beta-lactam resistance in an engineered metallo-beta-lactamase. J Biol Chemi. 2013; 288(4): 2314-24
Pfeifer Y, Cullik A, Witte W. Resistance to Cephalosporins and Carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol. 2010; 300(6): 371-9.
Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and Extended Spectrum Beta-Lactamases: types, epidemiology and treatment. Saudi J Biol. Sci. 2015; 22(1): 90-101.
Cantón R, TM C. The CTX-M β-lactamase pandemic. Curr Opin Microbiol. 2006; 9(5): 466-75.
Villa L, Pezzella C, Tosini F, Visca P, Petrucca A, Carattoli A. Multiple-antibiotic resistance mediated by structurally related IncL/M plasmids carrying an Extended-Spectrum Beta-Lactamase gene and a class 1 integron. Antimicrob Agents Chemother. 2000; 44(10): 2911–2914.
Frank T, Gautier V, Talarmin A, Bercion R, Arlet G. Characterization of sulphonamide resistance genes and class 1 Integron gene cassettes in Enterobacteriaceae, Central African Republic (CAR). J Antimicrob Chem. 2007; 59(4): 742-5.
Kuihai W, Fengping W, Jingjing S, et al. Class 1 Integron gene cassettes in multidrug-resistant Gram-negative bacteria in southern China. Int J Antimicrob Agents. 2012; 40(3): 264-267.
Moammadi F, Arabestani MR, Safari M, Roshanaii G, Alikhani MY. Prevalence of class1, 2 and 3 integrons among extensive drug resistance Acinetobacter baumanii strains isolated from intensive care units in Hamadan, west province, Iran . Iran J Med Microbiol. 2014; 8(3): 8-14.
Hajiahmadi F, Safari N, Alijani P, Rabiei M, Masomian N, Arabestani MR. Assessment of the Prevalence of Class I and II Integrons of Escherichia coli and Klebsiella pneumoniae Isolates From Hospitals of Hamadan. Avicenna J Clin Med. 2016; 23(3):193-201.
Ardeshiri N, Nasrollahi M, Goudarzi H, Goudarzi M, Ghalavand Z, Dadashi M. The prevalence of Integron 1, 2 and 3 classes in Acinetobacter baumanii clinical isolates from Sari Hospitals, Iran. Res Med. 2017; 41(3): 217-225.
Murray PR, Rosenthal KS, Pfaller MA. Medical Microbiology. Elsevier Health Sciences; 2015, 8 th edition.
Biemer JJ. Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Ann Clin Lab Sci. 1973; 3(2): 135-40.
Clinical and Laboratory Standards Institute(CLSI). Performance standards for antimicrobial susceptibility testing. 27th ed. CLSI supplement M100. Wayne, Pa: CLSI. 2017.
Yazdi M, Nazemi A, Mirinargasi M, Khataminejad M, Sharifi S, Babaikochkaksaraei M. Prevalence of SHV/CTXM/TEM (ESBL) beta-lactamase resistance genes in Escherichia coli isolated from urinary tract infections in Tehran. Med Lab J. 2010; 4: 67-80.
Manyahi J, Tellevik MG, Ndugulile F, Moyo SJ, Langeland N, Blomberg B. Molecular characterization of cotrimoxazole resistance genes and their associated integrons in clinical isolates of Gram-negative bacteria from Tanzania. Microb. Drug Resist. 2017; 23(1): 37-43.
Sedighi M, Halajzadeh M, Ramazanzadeh R, Amirmozafari N, Heidary M, Pirouzi S. Molecular detection of β-lactamase and integron genes in clinical strains of Klebsiella pneumoniae by multiplex polymerase chain reaction. Rev Soc Bras Med Trop. 2017; 50(3): 321-328.
Derakhshan S, Najar Peerayeh S, Bakhshi B. Association between presence of virulence genes and antibiotic resistance in clinical Klebsiella Pneumoniae isolates. Laboratory medicine. 2016; 47(4): 306-11.
Agersø Y, Petersen A. The tetracycline resistance determinant Tet 39 and the sulphonamide resistance gene sulII are common among resistant Acinetobacter spp. isolated from integrated fish farms in Thailand. Journal of antimicrobial chemotherapy. 2006; 59(1): 23-7.
Zaniani FR, Meshkat Z, Nasab MN, Khaje-Karamadini M, Ghazvini K, Rezaee A, et al. The prevalence of TEM and SHV genes among extended-spectrum beta-lactamases producing Escherichia coli and Klebsiella pneumoniae. Iranian journal of basic medical sciences. 2012; 15(1): 654.
Shahbazi S, Karam MRA, Habibi M, Talebi A, Bouzari S. Distribution of extended-spectrum β-lactam, quinolone and carbapenem resistance genes, and genetic diversity among uropathogenic Escherichia coli isolates in Tehran, Iran. Journal of global antimicrobial resistance. 2018; 14: 118-25.
Poirel L, Pham J, Cabanne L, Gatus B, Bell S, Nordmann P. Carbapenem‐hydrolysing metallo‐β‐lactamases from Klebsiella pneumoniae and Escherichia coli isolated in Australia. Pathology. 2004; 36(4): 366-7.