شناسایی و ارزیابی محدودههای ایمن شهری در بحران زلزله به روش تحلیل سلسله مراتبی فازی (مطالعه موردی منطقه 2 شهر خرم آباد)
الموضوعات :امین الفتی 1 , محمود رحیمی 2 , مهدی روانشادنیا 3
1 - دانشجوی دکتری، گروه مهندسی و مدیریت ساخت، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
2 - استادیار، گروه شهرسازی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران.
3 - دانشیار، گروه مهندسی و مدیریت ساخت، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
الکلمات المفتاحية: زلزله, ArcGIS, Expert Choice, تحلیل سلسله مراتبی فازی, محدودههای ایمن,
ملخص المقالة :
بخشهای غرب و جنوب غرب ایران به علت قرارگیری روی کمربند لرزهخیز آلپ- هیمالیا همواره تحت تأثیر زلزلههای مخربی قرار داشتهاند. هدف اصلی این پژوهش تعیین مکانهای ایمن شهری پس از زلزله جهت کمک به شهروندان و مدیریت بحران با بهرهگیری از شاخصهای موثر است. به منظور تعیین معیارهای تحقیق، ابتدا بر اساس مطالعات کتابخانهای تعداد 48 شاخص استخراج و با توجه به بیشترین تعداد تکرار آنها در مقالات مطالعه شده و همچنین مصاحبه با متخصصین و بهکارگیری روش دلفی، ۸ معیار شامل فاصله از گسل، بافت های فرسوده، مراکز خدماتی، فضاهای باز شهری، رودخانه، جاده و خیابانهای اصلی، میزان شیب و جنس زمین و همچنین ۲۷ زیرمعیار انتخاب شد. برای وزندهی به معیارها و زیرمعیارها و تعیین نرخ ناسازگاری آنها بر اساس فرآیند تحلیل سلسله مراتبی، نرمافزار Expert Choice و جهت پیادهسازی، فازیسازی و تلفیق لایههای اطلاعاتی، نرمافزار ArcGIS بهکار گرفته شد. نتایج تحلیل سلسله مراتبی نشان داد که فاصله از گسل بیشترین (203/0) و فاصله از فضای باز شهری (078/0) کمترین وزن معیار موثر را دارند. در ادامه لایه نهایی پهنهبندی محدودههای ایمن بر اساس 5 متغیر زبانی شامل ناایمن، نسبتاَ ناایمن، متوسط، نسبتاَ ایمن و ایمن در نرمافزار ArcGIS تهیه گردید. انطباق لایههای فازی شده معیارهای مختلف با نقشه پهنهبندی نشان داد که بخش اعظم منطقه ۲ شهر خرمآباد در محدوده متوسط تا نسبتاَ ایمن قرار داشته و بیشترین میزان آسیبپذیری مربوط به جنوب غربی آن است.
References
Abulnour, A, H. (2014). The post-disaster temporary dwelling: Fundamentals of provision, design and construction. Housing and Building National Research Center (HBRC). 10(1): 10-24.
Afzali, A. Sabri, S. Rashid, M. Mohammad Vali Samani, J and Ludin. A. (2014). Inter-municipal landfill site selection using analytic network process. Water Resources Management. 28(8): 2179-2194.
Baladpas, A. Valizadehkamran, K. Emamikia, V. (2013). Evaluating development of urban settlement in vulnerable fault affected regions using multiple method (case study: Tabriz baghmishe suburb). New Attitudes In Human Geography. 5(4): 35-48.
Bartels, S. A. VanRooyen, M. J. (2012). Medical complications associated with earthquakes, The Lancet . 379: 748-757.
Behzadafshr, K. Akbari, P. (2019). Explanation and analysis of land use planning criteria in earthquake risk reduction to increase urban resilience (Case study: Sanandaj city). New Attitudes In Human Geography. 11(2): 341-357.
Chu, J. Su, Y. (2012). The application of TOPSIS method in selecting fixed seismic shelter for evacuation in cities. Systems Engineering Procedia. 3: 391 -397.
Dadashpour, H. Khodabakhsh, H, R. (2014). Optimal Locations of Temporary Housing Sites Using a Fuzzy Analytic Hierarchy Process (FAHP), Case Study of Region 16 of Tehran. Journal of Geography and Planning. 17(46): 67-90.
Donevska, K. R. Gorsevski, P. V. Jovanovski, M. Pesevski, I. (2011). Regional non-hazardous landfill site selection by integrating fuzzy logic, AHP and geographic information systems. Environmental Earth Sciences. 67(1): 121 -131.
Falah, F. Daneshfar, M. Ghorbaninejad, S. (2017). Application of the Statistical Index Model in Groundwater Potential Mapping in the Khorramabad Plain. Journal of Water and Sustainable Development. 4(1): 89-98.
Givechi, S. Attar, M, A. (2013). Application of multiple criteria decision making models to site selection for temporary housing after earthquakes case study: shiraz, district 6. Emergency Management. 1(2): 35-43.
Hoseini, S, F. Soleymani, M. Azizpour, F. Porbar, F. (2014). Application of GIS in the role of local institutions Disaster for rural areas (City Qyrvkarzyn). Geographical Data (SEPEHR). 23(89): 46- 53.
Khan, D. Samadder, S. R. (2015). A multi-criteria evaluation model for landfill site ranking and selection based on AHP and GIS. Journal of Environmental Engineering & Landscape Management. 23(4): 267-278.
Khanahmadi, M. Arabi, M. Vafaienejad, A. Rezaiean, H. (2014). Locate fire stations Using Fuzzy Logic and AHP integration in GIS environment (Case Study: District 1 District 10 of Tehran). Geographical Data (SEPEHR). 23(89): 88- 98.
Kar, B. Hodgson, M. E. (2008). A GIS‐based model to determine site suitability of emergency evacuation shelters. Transactions in GIS. 12(2): 227-248.
Karimi Kordabadi, M. Najafi, I. (2015). Assessing the earthquake hazard using the AHP-FUZZY hybrid model for urban security (Case study of Tehran Metropolitan district 1). Urban Planning Research. 6(20): 17-24.
Keykhosravi, Q. Lashkari, H. Baghaei, M. Nahaldani, M. (2016). Locating Factory Industries by AHP Method and Fuzzy Logic Model in Sabzevar. New Attitudes In Human Geography. 8(4): 125-147.
Lantada, N. Pujades, L, G. Barbat, A. H. (2009). Vulnerability index and capacity spectrum based methods for urban seismic risk evaluation. A comparison. Natural Hazards. 51(3): 501-524.
Lee, A. H. I. Chen, W. C. Chang, C.J. (2008). A Fuzzy AHP and BSC Approach for Evaluating Performance of IT Department in the Manufacturing Industry in Taiwan. Expert Systems with Applications. 34: 96-107.
Lotfi, H. moradipour, S. Honardoust, M. (2017). The Role of province geopolitics units in network economic model designing in iran (case study: Lorestan province). New Attitudes In Human Geography. 9(3): 173-195.
Mahdipour, F. Sadi Mesgari, M. A. Model for Location Based on Multi Criteria Decision Making Methods in GIS. Geomatics Conference. Tehran. 1-3.
Malczewski, J. (2004). Gis-based land-use suitability analysis: a critical overview. Progress in Planning. 62(1): 3-65.
Mansourian, S, E. Al-Husseini Al-Madrasi, S, A. (2017). Zoning the potential risk of an earthquake in the Mamasani district (Nourabad) of Fars province, Iran, for Gas network crisis management based on the AHP model using the ArcGIS software. Emergency Management. 81.
Moradipour, S. Ezzati, E. Lotfi, H. (2019). Investigating the Role of Lorestan Situation in Geopolitical Relation to Iranian Security. New Attitudes In Human Geography. 11(4): 351-374.
Motamedi, M. Zaferanlou, A. Khaleghi, M. (2013). Locating industrial suburbs using fuzzy GIS (case study: Shirvan industrial suburb). New Attitudes In Human Geography. 6(1): 103-114.
Najafi, K. Farahmand, M. (2019). Investigating the Factors Affecting the Consensus of the Lak and Lor Peoples (Case Study: Men in Khorramabad City). Journal of Social Development. 13(4): 153-186.
Nobakht, M. B. (2017). Advanced research method for master and doctoral student, 4th. jahad daneshgahi press. 508p.
Payard Rad, D. Vafainejad, A, R. (2015). Using a GIS Based Decision Support System to Aid Earthquake Crisis Management with Site Selection of Temporary Housing Case Study: District 8 of Isfahan Municipality. Journal of Geomatics Science and Technology. 5(2): 231-246.
Qaedrahmati, S. Khadem Al-Husseini, A. Siavoshi, T. (2013). Analysis of the Riskability of Urban Habitats of Lorestan Province against the Risk of the Earthquake. Geography and Urban Preperations. Vol. 9.
Ranjbar, H. R. Dehghani, H. Azmoude Ardalan, A. R. Saradjian, M. R. (2017). A GIS-based approach for earthquake loss estimation based on the immediate extraction of damaged buildings, Geomatics. Natural Hazards and Risk. 8(2): 772-791.
Rashed, T. Weeks, J. Couclelis, H. Herold, M. (2007). An Integrative GIS and Remote Sensing Model for Place – based Urban Vulnerability Analysis, integration of GIS and Remote Sensing. John Wiley & Sons. New York.
Rezaie, F. Panahi, M. (2015). GIS modeling of seismic vulnerability of residential fabrics considering geotechnical, structural, social and physical distance indicators in Tehran using multi-criteria decision-making techniques. Natural Hazards and Earth System Sciences. 15: 461–474.
Simsek, C. Elci, A. Gunduz, O. Taskin, N. (2014). An improved landfill site screening procedure under nimby syndrome constraints. Landscape & Urban Planning. 132(12): 1-15.
Tait, P. Vallance, S. Rutherford, P. (2016). Expanding the conversational terrain: Using a choice experiment to assess community preferences for post-disaster redevelopment options. Land Use Policy. 55: 275–284.
Tudes, S. Yigiter, N. D. (2011). Preparation of land use planning model using GIS based on AHP: case study Adana-Turkey. Bulletin of engineering geology and the environment. 69: 235-245.
UNISDR. 2009 UNIDDR terminology of disaster risk reduction. Report, United Nations International strategy for Disaster Risk Reduction, 2009.
Uyan, M. (2014). Msw landfill site selection by combining AHP with GIS for konya, turkey. Environmental Earth Sciences. 71(4): 1629- 1639.
Yazdani, M. Monavari, S. M. Omrani, G. A. Shariat, M. Hosseini, S. M. (2015). Landfill site suitability assessment by means of geographic information system analysis. Solid Earth. 6(3): 945-956.
Zhao, S. (2010). Gis FFE—an integrated software system for the dynamic simulation of fires following an earthquake based on GIS. Fire Safety Journal. 45(2): 83-97.
Zivyar, P. Teimouri, S. (2013). tourism geography of Khorramabad and the role of historical monument in its development. New Attitudes In Human Geography. 5(4): 180-190.