مروري بر انواع روشهای مناسب هضم بیهوازی خشک جهت دفع پسماندهای کشاورزی ایران
الموضوعات :
1 - دانشجوی دکتری علوم و مهندسی محیط زیست، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی تهران/ايران
2 - دانشیار، گروه علوم محیط زیست و جنگل، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی تهران/ ايران. *(مسوول مکاتبات)
الکلمات المفتاحية: پسماندهای کشاورزی, بیوگاز, هضم بیهوازی خشک, روش منقطع هضم بيهوازي, روش پيوسته هضم بيهوازي.,
ملخص المقالة :
زمینه و هدف: هضم بیهوازی خشک روشی مقرون به صرفه برای تصفیه و بازیابی پسماندهای کشاورزی است. آمار بالای تولیدات کشاورزی (بيش از 128میلیون تن در 99-1398) و پیامد آن تولید بالای زائدات (38 میلیون تن در سال)، لزوم توجه به دفع بهینه این زیستتوده را، نشان میدهد. هدف اصلی اين مقاله، شناسایی و مقایسه انواع هاضمهای بیهوازی خشک برای مدیریت بهینه پسماندهای کشاورزی ایران ميباشد. روش بررسی: این مقاله حاصل بررسي کتب و مقالات آنلاين داخلی و خارجی از سايتهاي گوگل اسکولار، ساينسدايرکت، ريسرچگيت و ناشران الزوير، اشپرينگر، فرنتيرز و سيويليکا با کليدواژه پسماند کشاورزي، بيوگاز و هضم بيهوازي خشک ميباشد. یافته ها: عملکرد خوب اجرایی، هزینه پایین انرژی و نگهداری، از مزایای شرایط مزوفیلیک دمایی در واحدهای هضم بیهوازی خشک است. زمان ماند هیدرولیکی از 20 تا 35 روز متغیر، میانگین جامدات کل بالای 15 درصد و میانگین درصد متان بیوگاز، حدود 55 درصد میباشد. هاضمهای ناپیوسته، فناوری نسبتاً ساده و قابل قبولی را برای دفع پسماندهای کشاورزی ارائه ميکنند؛ اما پایداری تأمین بیوگاز با هاضمهای پیوسته، علیرغم نیاز بیشتر به نگهداری و مدیریت، آسانتر است. بحث و نتیجهگیری: این فناوری، بواسطه کارآیی و انعطافپذیری جهت بهرهبرداری با ارزش بالا از پسماندهای کشاورزی و توسعه پایدار بیوگاز مناسب است. توسعه فناوری مناسب برای افزایش بهرهوری بیوگاز، با توجه به خصوصيات جغرافیایی، تناژ تولید و ويژگي پسماند پیشنهاد میشود. فرآیند هضم بیهوازی ناپیوسته در استانهایی از ایران که فعالیتهای کشاورزی در مقیاس کوچکتر رواج دارد؛ درمقایسه با هضم بیهوازی پیوسته، مؤثرتر است.
1. Ahmadi, K.; Ebadzadeh, H.;Hatami,F.; Hoseinpour,R. Agricultural Statistics Book of the Crop Products (2018-2019). First Edition, Ministry of Jihad Agriculture Publications, Deputy of Planning and Economy, Information & Communication Center, 2020, Vol.1. (In Persian)
2. Taghavi, L.; Abbaspour,M. The Role of Renewable Energy in Sustainable Development (with Emphasis on Biogas Produced from Agricultural Waste), 4th Iranian Bioenergy Conference (Biomass and Biogas). 2013. Tehran. Iran. (In Persian)
3. Tsapekos, P.; Khoshnevisan, B.; Alvarado-Morales, M.; Zhu, X.; Pan, J.; Tian, H.; Angeli- daki, I. Upcycling the anaerobic digestion streams in a bioeconomy approach: a review. Renewable Sustainable Energy Rev. 2021. Vol.151.
4. Shirzad, M.; Kazemi Shariat Panahi,H.; Dashti, B.;Rajaeefar, M.A.;Aghbashlo,M. A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran. Renewable and Sustainable Energy Reviews. 2019. Vol. 111, PP. 571-594.
5. Durante Muhl, D.; Oliveira, L. Features of anaerobic digestion plants in the brazilian agricultural sector. Cleaner and Circular Bioeconomy.2022. Vol.1.
6. Oconnor, S.; Ehimen, E.; Pillai, S.C.; Black, A.; Tormey, D.; Bartlett, J. Biogas production from small-scale anaerobic digestion plants on European farms. Renewable Sustainable Energy Rev. 2021. Vol.139.
7. Nicolae,S.; Jean-Francois,D.; Fahl,F.Biogas: Developments and perspectives in Europe. Renewable Energy. 2018. Vol.129, Part A. December 2018, PP. 457-472.
8. Y, Fu.; T, Luo.; Z, Mei.; J, Li.; K, Qiu.; Ge, Y. Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China. Sustainability. 2018. Vol. 10, No.12, PP. 1-13.
9. Ge, X.; Xu, F.; Li, Y. Solid-state anaerobic digestion of lignocellulosic biomass: Recent progress and perspectives. Bio resource Technology. 2016 .Vol. 205,PP. 239–249.
10. World Biogas Association (WBA). Biogas: Pathways to 2030. new report. 2021.
11. Raboni,M.; Viotti,P.; Capodaglio,AG. A comprehensive analysis of the current and future role of biofuels for transport in the European Union (EU). Ambiente & Agua - An Interdisciplinary Journal of Applied Science. 2015.Vol.10.
12. European Biogas Association Report 2017, Available in: www.europeanbiogas.eu/
13. Pham Van, D.; Fujiwara, T.; Leu Tho, B.; Song Toan, P.P.; Minh, G.H. A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environmental Engineering Research. 2019.
14. Zealand, A.M.; Roskilly, A.P.; Graham, D.W. The Effect of Feeding Frequency and Organic Loading Rate on the Anaerobic Digestion of Chinese Rice Straw. Energy Procedia. 2017.Vol.105,PP. 62–67.
15. Labatut, R.A.; Angenent, L.T.; Scott, N.R. Conventional mesophilic vs. thermophilic anaerobic digestion.Water Res. 2014. Vol. 53,PP. 249–258.
16. Yoshida, H.; Gable, J.J.; Park, J.K. Evaluation of organic waste diversion alternatives for greenhouse gas reduction". Resourse. Conservation. Recycling.2012. Vol. 60, PP. 1–9.
17. Mcdonald, N. DRANCO Anaerobic Digestion Plant in Hengelo, Netherlands, Integration of AD with Existing Composting and RDF Facility. OWS, Inc, Biocycle. 2012. PP. 29-31.
18. De Baere, L.The DRANCO Technology: A Unique Digestion Technology for Solid Organic Waste. Organic Waste Systems.. 2012. PP. 2-8.
19. Abbasi,T.; Tosif,S.M.; Abbasi,S.E. Biogas energy. Translated by Kazem Nadafi et al., Publications of Municipalities & Rural Affairs Organization, 2017. (In Persian)
20. Kothari, R.; Pandey, A.K.; Kumar, S.; Tyagi, V.V.; Tyagi, S.K. Different aspects of dry anaerobic digestion for bio-energy,Renewable and Sustainable Energy Reviews, Elsevier. 2014, Vol.39, PP.174–195.
21. Rapport, J.; Zhang, R.; Jenkins, B.M.; Williams, R.B. Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste. California Integrated Waste Management Board, Department of Biological & Agricultural Engineering, 2008.
22. Eslami, H.; Hashemi, H.; Fallahzadeh, R.A.; Khosravi, R.; Fard, R.F.; Ebrahimi, A.A. Effect of organic loading rates on biogas production & anaerobic biodegradation of composting leachate in anaerobic series bioreactors. Ecol. Eng. 2018.Vol. 110, PP.165–171.
23. Shen, F & et al. Improving the Mixing Performances of Rice Straw Anaerobic Digestion for Higher Biogas Production by Computational Fluid Dynamics Simulation. Appl. Biochem. Biotechnol.2013.Vol.171,PP. 626–642.
24. Abdoli,M.A.; Pazouki,M,; Samieefard,R.;Rahmati,A. Potential and technology of energy production from biomass in rural areas. First edition, Tehran, Municipalities and Rural Affairs Organization, Ostad Motahari Publications, 2012. Vol.2. (In Persian)