Weighted Differentiation Composition Operators from Weighted Bergman Spaces with Admissible Weights to Bloch-type Spaces
الموضوعات : مجله بین المللی ریاضیات صنعتی
1 - Department of Mathematics, Aligudarz Branch, Islamic Azad University, Aligudarz, Iran.
الکلمات المفتاحية: Bloch-type space, Compactness, Boundedness, Weighted Bergman space, Admissible weight, Weighted differentiation composition operator,
ملخص المقالة :
For an analytic self-map $\varphi$ of the unit disk $\mathbb{D}$ in the complex plane $\mathbb{C}$, a nonnegative integer $n$, and $u$ analytic function on $\mathbb{D}$, weighted differentiation composition operator is defined by $(D_{\varphi,u}^nf) (z)=u(z)f^{(n)}(\varphi(z))$, where $f$ is an analytic function on $\mathbb{D}$ and $z\in\mathbb{D}$. In this paper, we study the boundedness and compactness of $D_{\varphi,u}^n$, from weighted Bergman spaces with admissible weights to Bloch-type spaces.
[1] A. Aleman, O. Constantin, Spectra of integration operators on weighted Bergman spaces, J. Anal. Math. 109 (2009) 199-231.
[2] A. Aleman, A. Siskakis, Integration Operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997) 337-356.
[3] D. Bekoll´e, In´egalit´es ´a poids pour le projecteur de Bergman dans la boule unit´e de Cn, [Weighted inequalities for the Bergman projection in the unit ball of Cn], Studia Math. 71 (1982) 305-323.
[4] D. Bekoll´e, A. Bonami, In´egalit´es ´a poids pour le noyau de Bergman, (French) C. R. Acad. Sci. Paris Sr. A-B 286 (1978) 775-778.
[5] O. Constantin, Carleson embeddings and some classes of operators on weighted Bergman spaces, J. Math. Anal. Appl. 365 (2010) 668-682.
[6] C. C. Cowen, B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Stud. Adv. Math. CRC Press, Boca Raton, FL, 1995.
[7] P. Duren, A. Schuster, Bergman Spaces, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, (2004).
[8] J. B. Garnet, Bounded Analytic Functions, Academic Press, 1981.
[9] D. Gu, A Carleson measure theorem for weighted Bergman spaces, Complex Variables Theory Appl. 21 (1993) 79-86.
[10] W. W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc. 52 (1975) 237-241.
[11] R. Hibschweiler, N. Portnoy, Composition followed by differentiation between Bergman and Hardy spaces, Rocky Mountain J. Math. 35 (2005) 843-855.
[12] Q. Hu, X. Zhu, A new characterization of differences of generalized weighted composition operators from the Bloch space into weighted-type spaces, Math. Ineq. Appl. 21 (2018) 63-76.
[13] S. Li, S. Stevic, Composition followed by differentiation between Bloch type spaces, J. Comput. Anal. Appl. 9 (2007) 195-205.
[14] S. Li, S. Stevic, Generalized weighted composition operators from α -Bloch spaces into weighted-type spaces, J. Ineq. Appl. 265 (2015) http://dx.doi.org/10.11866/
s13660-015-0770-9/.
[15] S. Li and S. Stevic, Composition followed by differentiation from mixed-norm spaces to
α -Bloch spaces,Sb.Math. 199 (2008) 1847-1857.
[16] S. Li, S. Stevic, Composition followed by differentiation between H1 and α -Bloch spaces, Houston J. Math. 35 (2009) 327-340.
[17] S. Li, S. Stevic, Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces, Appl. Math. Comput. 217 (2010) 3144-3154.
[18] D. Luecking, Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J. 34 (1985) 319-336.
[19] J. A. Pelaez, J. Rattya, Weighted Bergman Spaces Induced by Rapidly Increasing Weights, Memoirs of Amer. math. Soc. 13 (2014) 12-23.
[20] A. Siskakis, Weighted integrals of analytic function, Acta Sci. Math. (Szeged) 66 (2000) 651-664.
[21] S. Stevic, Composition operators on the generalized Bergman space, J. Indian Math. Soc. 69 (2002) 61-64.
[22] S. Stevic, Weighted composition operators from weighted Bergman spaces to weightedtype spaces on the unit ball, Appl. Math. Comput. 212 (2009) 499-504.
[23] S. Stevic, Weighted differntiation composition operators from mixed-norm spaces to weighted-type spaces, Appl. Math. Comput. 211 (2009) 222-233.
[24] S. Stevic, Norm and essential norm of composition followed by differentiation from α -Bloch spaces to Hµ1 , Appl. Math. Comput. 207 (2009) 225-229.
[25] S. Stevic, Products of composition and differentiation operators on the weighted Bergman space, Bull. Belg. Math. Soc. Simon Stevin 16 (2009) 623-635.
[26] S. Stevic, Characterizations of composition followed by differentiation between Blochtype spaces, Appl. Math. Comput. 218 (2011) 4312-4316.
[27] S. Stevic, Weighted differentiation composition operators from the mixed-norm space to
the nth weigthed-type space on the unit disk, Abstr. Appl. Anal. 13 (2010) 13-31.
[28] S. Stevic, Weighted differentiation composition operators from H1 and Bloch spaces to nth weighted-type spaces on the unit disk, Appl. Math. Comput. 216 (2010) 3634-3641.
[29] K. Stroethoff, The Bloch space and Besove spaces of analytic functions, Bull. Austral. Math. Soc. 54 (1996) 211-219.
[30] A. Shields, D. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971) 287-302.
[31] Y. Weifeng, W. Weiren, Generalized weighted composition operators from area Nevanlinna spaces to weighted-type spaces, Bull. Korean Math. Soc. 48 (2011) 1195-1205.
[32] E. Wolf, Weighted composition operators between weighted Bergman spaces and weighted Banach spaces of holomorphic functions, Rev. Mat. Comput. 21 (2008) 475-480.
[33] Y. Wu, H. Wulan, Products of differentiation and composition operators on the Bloch space, Collet. Math. 63 (2012) 93-107.
[34] W. Yang, X. Zhu, Differences of generalized weighted composition operators between growth spaces, Ann. Polon. Math. 112 (2014) 67-83.
[35] X. Zhu, Generalized weighted composition operators on weighted Bergman spaces, Numer. Funct. Anal. Opt. 30 (2009) 881-893.
[36] X. Zhu, Products of differentiation, composition and multiplication from Bergman type spaces to Bers type space, Integ. Tran. Spec. Funct. 18 (2007) 223-231.
[37] X. Zhu, Generalized weighted composition operators from Bloch spaces into Bers-type
spaces, Filomat 26 (2012) 1163-1169.