بررسی مقدار جذب شیمیایی کروم توسط ساقه برنج با استفاده از مدل ایزوترم جذب فیزیکو شیمیایی
الموضوعات :فاطمه سلطانی 1 , شایان شامحمدی 2
1 - (مسوول مکاتبات): دانش آموخته کارشناس ارشد گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران.
2 - استاد گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران.
الکلمات المفتاحية: جذب, ساقه برنج, کروم, مدلهای تعادلی,
ملخص المقالة :
زمینه و هدف: یکی از مهم ترین اهداف مدلهای ایزوترم جذب، تعیین حداکثر ظرفیت جاذب است. هدف اصلی از این تحقیق، بررسی مقدار جذب شیمیایی کروم از محیط آبی توسط ساقه برنج با استفاده از مدل ایزوترم جذبفیزیکو شیمیایی شامحمدی و مقایسه مدلهای ایزوترم جذب در تعیین حداکثر ظرفیت جاذب است. روش بررسی: برای انجام این تحقیق از ساقه برنج با اندازه ذرات 75، 300، 850 و 1200 میکرون و محلول کروم با غلظتهای 15 تا 40 میلیگرم بر لیتر استفاده شد یافتهها: حداکثر بازده جذب در 2=pH و جرم 10 گرم بر لیتر از جاذب 75 میکرونی، 30/96% به دست آمد. حداکثر ظرفیت جذب ساقه برنج از مدل لانگمویر و مدل شامحمدی در اندازه ذرات 75 میکرون به ترتیب 918/2 و 926/4 میلیگرم بر گرم، در اندازه ذرات 300 میکرون، 206/2 و 310/3 میلیگرم بر گرم، در اندازه ذرات 850 میکرون، 838/1 و 617/2 میلیگرم بر گرم و در اندازه ذرات 1200 میکرون، 037/1 و 322/1 میلیگرم بر گرم به دست آمد. بحث و نتیجهگیری: نتایج مطالعات ایزوترم جذب نشان داد که بر اساس مدل شامحمدی به طور متوسط 5/20% مقدار جذب به صورت جذب اولیه میباشد. همچنین با در نظر گرفتن مقدار جذب تعادلی (qe) به عنوان تابعی از غلظت اولیه (c0)، ضمن این که باعث افزایش دقت مدل ایزوترم میشود (بر اساس معیارهای ارزیابی)، مقدار حداکثر ظرفیت تعادلی جذب (qemax) را نیز به طور متوسط به اندازه 5/26% بیش تر از مدل لانگمویر نشان میدهد. بنابراین کاربرد مدل شامحمدی به طور میانگین 47%، مقدار ظرفیت جذب یون کروم توسط ساقه برنج را بیش تر از مدل لانگمویر نشان میدهد.
1- ناصح، نگین و همکاران. « بررسی کارآیی حذف کروم شش ظرفیتی از محلولهای آبی، با استفاده از جاذب طبیعی پوسته سبز بادام و خاکستر حاصل از آن ». مجله علمی دانشگاه علوم پزشکی بیرجند. پائیز 1392، شماره 3، صفحات 220 تا 232.
2- Gupta, V.K., Shrivastava, A.K., Jain, N. 2001. Biosorption of chromium (VI) from aqueous solutions by green algae spirogyra species. Water Research, Vol. 35, pp. 4079–4090.
3- MadhavaRao, M., Ramesh, A., Purna Chandra Rao, G., and Seshaiah, K. 2006. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Hazardous Materials, B129, pp. 123- 129.
4- Aydin, H., Bulut, Y., and Yerlikaya, C. 2008. Removal of copper (II) from aqueous solution by adsorption onto low- cost adsorbents. Environment Management, Vol. 87, pp. 37- 45.
5- Qu, J.H. 2008. Research progress of novel adsorption processes in water purification: A review. Environment Sciences, Vol. 20, pp. 1–13.
6- Mahajan G, Sud D. 2011. Kinetics and equilibrium studies of Cr (VI) metal ion remediation by arachis hypogea shells: agreen approach. BioResources. Vol. 6, pp. 3324-3338.
7- Shawky, B.T, Mahmoud, M.G., Ghazy, E.A., Asker, M.M.S., Ibrahim, G.S. 2011. Enzymatic hydrolysis of rice straw and corn stalks for monosugars production. Journal of Genetic Engineering and Biotechnology, Vol. 9, pp. 59–63.
8- Binod, P., Sindhu, R., Singhania, R.R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R.K., Pandey, A. 2010. Bioethanol production from rice straw: An overview. Bioresource Technology, Vol. 101, pp. 4767–4774.
9- Malek, A., Farooq, S. 1996. Comparison of isotherm models for hydrocarbon adsorption on activated carbon. AIChE, Vol. 42, pp. 3191–3201.
10- Febrianto, J., Kosasih, A.N., Sunarso, J., Yi-Hsu, J., Indraswati, N., and Ismadji, S. 2009. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. Journal of Hazardous Materials, Vol. 162, pp. 616-645.
11- Bruanuer, S., Emmett, P.H., and Teller, E. 1938. Adsorption of gases in multimolecular layers. Journal of American Chemical Society, Vol. 60, pp. 309–316.
12- Lopez-Garcia, M., Lodeiro, P., Barriada, J.L., Herrero, R., and Sastrede Vicente, M.E. 2010. Reduction of Cr (VI) levels in solution using bracken fern biomass: Batch and column studies. Chemical Engineering, Vol. 165, pp. 517-523.
13- Bayat, B. 2002. Comparative study of adsorption properties of Turkish fly ashes II. The case of chromium (VI) and cadminum (II). Hazardous Material, Vol. 95, pp. 275–290.
14- Shamohammadi, S. 2014. Presentation of new physical chemistry isotherm model for adsorption processes from the solution. International Journal of plant, animal and environmental sciences, Vol. 4, pp. xx.
15- Shamohammadi, S. 2012. Study of Kinetics of Copper in Aqueous Solution by Sawdust Adsorbent. Journal of Water and Wastewater, Vol. 24, pp. 127-133.
16- Shamohamadi, S., Bustanian, M., and Tavakol, H. 2013. Removing Cd (II) from water and wastewater by blowy sand; the effects of total hardness and pH. Journal of desalination and water treatment, Vol. 51, pp. 16-18.
17- AL-Othman, Z.A., Ali, R., and Naushad, M.u. 2012. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium andthermodynamic studies. Chemical Engineering, Vol. 184, pp. 238– 247.
18- Chang, Y.Y., Lim, J.W., and Yang, J.K. 2012. Removal of As (V) and Cr (VI) in aqueous solution by sand media simultaneously coated with Fe and Mn oxides. Industrial and Engineering Chemistry, Vol. 18, pp. 188–192.