ارزیابی خصوصیات واسنجی مدل هیدرولوژیکی SWAT در یک حوضه کوهستانی
الموضوعات :
بابک امین نژاد
1
,
سیدبامداد غفوریان
2
,
حسین ابراهیمی
3
1 - استادیار، گروه مهندسی عمران، هیئت علمی دانشگاه آزاد اسلامی واحد رودهن. *(مسوول مکاتبات)
2 - دانشجوی دکتری، گروه مهندسی عمران، هیئت علمی دانشگاه آزاد اسلامی واحد رودهن.
3 - دانشیار، گروه علوم و مهندسی آب، هیئت علمی دانشگاه آزاد اسلامی واحد شهر قدس.
تاريخ الإرسال : 06 الجمعة , جمادى الأولى, 1443
تاريخ التأكيد : 19 الأحد , رجب, 1443
تاريخ الإصدار : 25 الثلاثاء , محرم, 1444
الکلمات المفتاحية:
مدل فیزیکی,
مدل SWAT,
زاگرس,
قره سو,
رواناب,
ملخص المقالة :
زمینه و هدف: اطلاعات دقیق در مورد رواناب آینده در یک حوضه، تصمیمات مربوط به مدیریت و منابع آب تسهیل میکند و به حفظ منابع طبیعی برای توسعه پایدار کمک می کند. دو عامل هزینه و زمان دقیق مستقیماً با تخمین دقیق رواناب ارتباط دارند. استفاده از مدلهای کامپیوتری برای شبیه سازی پدیدههای طبیعی نظیر چرخه هیدرولوژی یکی از روشهای کاهش هزینه و افزایش دقت میباشد که بسیار مورد توجه بوده است.روش بررسی: در این تحقیق برای بررسی دقت روش های متفاوت واسنجی و اعتبارسنجی در شبیه سازی هیدرولوژیکی حوضه آبریز قره سو، از مدل هیدرولوژیکی SWAT استفاده شد که در آن مقایسه بین روشهای GLUE و PSO با روش SUFI-2 برای کالیبراسیون مدل مورد بررسی قرار گرفت. برای شبیه سازی، در یک وضعیت یکسان، 13 پارامتر حساس در همه روشها انتخاب شدند. لازم به ذکر است که داده های مورد نیاز برای این تحقیق از داده های جهانی (وبسایت مدل SWAT) و ملی (شرکت مدیریت منابع آب) جمع آوری شدند.یافتهها: هر سه روش GLUE و PSO با روش SUFI-2 قادر به شبیه سازی رواناب با R2 و NSE قابل قبول بودند (بالای 7/0) و تجزیه و تحلیل حساسیت نشان داد که Sol_K ، CH_N2 و CN2 حساسیت بیشتری نسبت به سایر پارامترها دارند.بحث و نتیجه گیری: اگرچه الگوریتمهای SUFI-2، PSO و GLUE می توانند اختلاف بین دادههای مشاهده ای و شبیه سازی شده را کاهش دهند، اما عملکرد الگوریتم SUFI-2 در شبیه سازی رواناب دقیق تر از الگوریتم های دیگر است. بنابراین پیشنهاد می شود که از این الگوریتم برای پیش بینی رواناب استفاده گردد.
المصادر:
Teshome, F. T., Bayabil, H. K., Thakural, L., & Welidehanna, F. G. (2020). Modeling Stream Flow Using SWAT Model in the Bina River Basin, India. Journal of Water Resource and Protection, 12(03), 203.
Tegegne, G., & Kim, Y. O. (2018). Modelling ungauged catchments using the catchment runoff response similarity. Journal of Hydrology, 564, 452-466.
Marques C. A. F., Ferreira J. A., Rocha A., Castanheira J. M., Melo-Goncalves P., Vaz N. and Dias J. M. (2006). Singular spectrum analysis and forecasting of hydrological time series. Phys. Chem. Earth A/B/C., 31(18), 1172–1179.
Sokolowski J. and Banks C. (2011). Principles of modeling and simulation: a multidisciplinary approach. John Wiley and Sons, Hoboken, New Jersey, USA.
Arnold, J., Moriasi, D., Gassman, P., Abbaspour, K.C., White, M., Srinivasan, R., Santhi, C., Harmel, R., Van Griensven, A. and Van Liew, M. 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE Vol. 55(4), pp. 1491-1508.
Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H. and Kløve, B. 2015. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology Vol. 524, pp. 733-752.
Aalami, M.T., Abbasi, H. and Niksokhan, M.H. 2018. Comparison of two calibration-uncertainty methods for Soil and Water Assessment Tool in stream flow modeling. 28, pp. 53-64. (In Persian)
Narsimlu, B., Gosain, A.K, Chahar, B.R, Singh, S.K and Srivastava, P.K. 2015. SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting. Environ Process, Vol 2(1), pp. 79–95.
Yang, J., Reichert, P., Abbaspour, K.C., Xia, J. and Yang, H. 2018. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of hydrology, Vol. 358(1-2), pp. 1-23.
Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J. and Srinivasan, R. 2007b. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of hydrology, Vol. 333(2-4), pp. 413-430.
Eini, M.R., Javadi, S., Delavar, M., Monteiro, J.A. and Darand, M. 2019. High accuracy of precipitation reanalyses resulted in good river discharge simulations in a semi-arid basin. Ecological engineering, Vol. 131, pp. 107-119.
Zhang, D., Yao, H., James, A., Lin, Q. and Fu, W. 2020. Modifying SWAT-CS for simulating chloride dynamics in a Boreal Shield headwater catchment in south-central Ontario, Canada. Science of The Total Environment, Vol. 717, pp. 137-213.
Abbaspour, K.C., Vejdani, M., Haghighat, S. and Yang, J. 2017. SWAT-CUP calibration and uncertainty programs for SWAT, pp. 1596-1602.
Kumarasamy, K. and Belmont, P. 2018. Calibration Parameter Selection and Watershed Hydrology Model Evaluation in Time and Frequency Domains. Water, Vol. 10(6), pp. 710.
Borah D.K, Arnold J.G, Bera M, Krug C.E, and Liang, X.Z. 2017. Storm event and continuous hydrologic modeling for comprehensive and efficient watershed simulations. Transaction of the ASCE, Vol. 6 (605), pp. 605-617.
Singh, V., Bankar, N., Salunkhe, S.S., Bera, A.K. and Sharma, J. 2013. Hydrological stream flow modelling on Tungabhadra catchment: parameterization and uncertainty analysis using SWAT CUP. Current science, pp. 1187-1199.
Besalatpour, A.A., Ayoubi, S., Hajabbasi, M.A., Gharipour, A., and A. Yousefian Jazi. 2014. Feature selection using parallel genetic algorithm for the prediction of geometric mean diameter of soil aggregates by machine learning methods. Arid Land Research and Management. Vol. 28, pp. 383-394.
Wu, H. and Chen, B. 2015. Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2 and ParaSol methods. Ecological Engineering, Vol. 76, pp. 110–
Ang, R., & Oeurng, C. (2018). Simulating streamflow in an ungauged catchment of Tonlesap Lake Basin in Cambodia using Soil and Water Assessment Tool (SWAT) model. Water Science, 32(1), 89-101.
Mengistu, A. G., van Rensburg, L. D., & Woyessa, Y. E. (2019). Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. Journal of Hydrology: Regional Studies, 25, 100621 .
Yang, X., Magnusson, J & ,.Xu, C.-Y. (2019). Transferability of regionalization methods under changing climate. Journal of Hydrology, 568, 67-81.
Leye, I., Sambou, S., Sané, M. L., Ndiaye, I., Ndione, D. M., Kane, S., . . . Cissé, M. T. (2020). Hydrological Modeling of an Ungauged River Basin Using SWAT Model for Water Resource Management Case of Kayanga River Upstream Niandouba Dam. Journal of Water Resources and Ocean Science, 9(1), 29-41 .
Ashrafi, S.M., Gholami, H. and Najafi, M.R. 2020. Uncertainties in runoff projection and hydrological drought assessment over Gharesu basin under CMIP5 RCP scenarios. Journal of Water and Climate Change, Vol. 11(S1), pp. 145-163.
Cameron, D., Beven, K. and Naden, P., 2000a. Flood frequency estimation by continuous simulation under climate change (with uncertainty). Hydrology and Earth System Sciences, Vol. 4:3, pp. 393–405.
Blazkova, S., Beven, K., Tacheci, P. and Kulasova, A. 2002. Testing the distributed water table predictions ofTOPMODEL (allowing for uncertainty in model calibration): the death of TOPMODEL? Water Resources Research, Vol. 38:11, pp. 1257.
Zhang, X., Srinivasan, R., Zhao, K. and Liew, M.V. 2009. Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrological Processes, Vol. 23(3), pp. 430-441.
Eini, M.R. 2019. Discussion of Intra-and interannual streamflow variations of Wardha watershed under changing climate. ISH Journal of Hydraulic Engineering, 27(4), pp. 474–475.
_||_
Teshome, F. T., Bayabil, H. K., Thakural, L., & Welidehanna, F. G. (2020). Modeling Stream Flow Using SWAT Model in the Bina River Basin, India. Journal of Water Resource and Protection, 12(03), 203.
Tegegne, G., & Kim, Y. O. (2018). Modelling ungauged catchments using the catchment runoff response similarity. Journal of Hydrology, 564, 452-466.
Marques C. A. F., Ferreira J. A., Rocha A., Castanheira J. M., Melo-Goncalves P., Vaz N. and Dias J. M. (2006). Singular spectrum analysis and forecasting of hydrological time series. Phys. Chem. Earth A/B/C., 31(18), 1172–1179.
Sokolowski J. and Banks C. (2011). Principles of modeling and simulation: a multidisciplinary approach. John Wiley and Sons, Hoboken, New Jersey, USA.
Arnold, J., Moriasi, D., Gassman, P., Abbaspour, K.C., White, M., Srinivasan, R., Santhi, C., Harmel, R., Van Griensven, A. and Van Liew, M. 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE Vol. 55(4), pp. 1491-1508.
Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H. and Kløve, B. 2015. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology Vol. 524, pp. 733-752.
Aalami, M.T., Abbasi, H. and Niksokhan, M.H. 2018. Comparison of two calibration-uncertainty methods for Soil and Water Assessment Tool in stream flow modeling. 28, pp. 53-64. (In Persian)
Narsimlu, B., Gosain, A.K, Chahar, B.R, Singh, S.K and Srivastava, P.K. 2015. SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting. Environ Process, Vol 2(1), pp. 79–95.
Yang, J., Reichert, P., Abbaspour, K.C., Xia, J. and Yang, H. 2018. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of hydrology, Vol. 358(1-2), pp. 1-23.
Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J. and Srinivasan, R. 2007b. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of hydrology, Vol. 333(2-4), pp. 413-430.
Eini, M.R., Javadi, S., Delavar, M., Monteiro, J.A. and Darand, M. 2019. High accuracy of precipitation reanalyses resulted in good river discharge simulations in a semi-arid basin. Ecological engineering, Vol. 131, pp. 107-119.
Zhang, D., Yao, H., James, A., Lin, Q. and Fu, W. 2020. Modifying SWAT-CS for simulating chloride dynamics in a Boreal Shield headwater catchment in south-central Ontario, Canada. Science of The Total Environment, Vol. 717, pp. 137-213.
Abbaspour, K.C., Vejdani, M., Haghighat, S. and Yang, J. 2017. SWAT-CUP calibration and uncertainty programs for SWAT, pp. 1596-1602.
Kumarasamy, K. and Belmont, P. 2018. Calibration Parameter Selection and Watershed Hydrology Model Evaluation in Time and Frequency Domains. Water, Vol. 10(6), pp. 710.
Borah D.K, Arnold J.G, Bera M, Krug C.E, and Liang, X.Z. 2017. Storm event and continuous hydrologic modeling for comprehensive and efficient watershed simulations. Transaction of the ASCE, Vol. 6 (605), pp. 605-617.
Singh, V., Bankar, N., Salunkhe, S.S., Bera, A.K. and Sharma, J. 2013. Hydrological stream flow modelling on Tungabhadra catchment: parameterization and uncertainty analysis using SWAT CUP. Current science, pp. 1187-1199.
Besalatpour, A.A., Ayoubi, S., Hajabbasi, M.A., Gharipour, A., and A. Yousefian Jazi. 2014. Feature selection using parallel genetic algorithm for the prediction of geometric mean diameter of soil aggregates by machine learning methods. Arid Land Research and Management. Vol. 28, pp. 383-394.
Wu, H. and Chen, B. 2015. Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2 and ParaSol methods. Ecological Engineering, Vol. 76, pp. 110–
Ang, R., & Oeurng, C. (2018). Simulating streamflow in an ungauged catchment of Tonlesap Lake Basin in Cambodia using Soil and Water Assessment Tool (SWAT) model. Water Science, 32(1), 89-101.
Mengistu, A. G., van Rensburg, L. D., & Woyessa, Y. E. (2019). Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. Journal of Hydrology: Regional Studies, 25, 100621 .
Yang, X., Magnusson, J & ,.Xu, C.-Y. (2019). Transferability of regionalization methods under changing climate. Journal of Hydrology, 568, 67-81.
Leye, I., Sambou, S., Sané, M. L., Ndiaye, I., Ndione, D. M., Kane, S., . . . Cissé, M. T. (2020). Hydrological Modeling of an Ungauged River Basin Using SWAT Model for Water Resource Management Case of Kayanga River Upstream Niandouba Dam. Journal of Water Resources and Ocean Science, 9(1), 29-41 .
Ashrafi, S.M., Gholami, H. and Najafi, M.R. 2020. Uncertainties in runoff projection and hydrological drought assessment over Gharesu basin under CMIP5 RCP scenarios. Journal of Water and Climate Change, Vol. 11(S1), pp. 145-163.
Cameron, D., Beven, K. and Naden, P., 2000a. Flood frequency estimation by continuous simulation under climate change (with uncertainty). Hydrology and Earth System Sciences, Vol. 4:3, pp. 393–405.
Blazkova, S., Beven, K., Tacheci, P. and Kulasova, A. 2002. Testing the distributed water table predictions ofTOPMODEL (allowing for uncertainty in model calibration): the death of TOPMODEL? Water Resources Research, Vol. 38:11, pp. 1257.
Zhang, X., Srinivasan, R., Zhao, K. and Liew, M.V. 2009. Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrological Processes, Vol. 23(3), pp. 430-441.
Eini, M.R. 2019. Discussion of Intra-and interannual streamflow variations of Wardha watershed under changing climate. ISH Journal of Hydraulic Engineering, 27(4), pp. 474–475.