تهيه نانوالياف پليمري زيست سازگار جديد حاوي عصاره گياه دافنه ماکروناتا و بررسي فعاليت ضدميکروبي آن
الموضوعات :لاله صفوی نیا 1 , محمد رضا اخگر 2 , بتول تهامی پور 3 , سید علی احمدی 4
1 - دانشجوي دکتراي شيمي آلي، گروه شيمی، واحد کرمان، دانشگاه ¬آزاد ¬اسلامي، کرمان، ايران.
2 - دانشيار شيمي¬ آلي، گروه شيمي، واحد کرمان، دانشگاه ¬آزاد ¬اسلامي، کرمان، ايران. *(مسوول مکاتبات)
3 - استاديار شيمي آلي، باشگاه پژوهشگران جوان و نخبگان، واحد سيرجان، دانشگاه ¬آزاد اسلامي، سيرجان، ايران
4 - استاديار شيمي¬ آلي، گروه شيمي، واحد کرمان، دانشگاه ¬آزاد ¬اسلامي، کرمان، ايران
الکلمات المفتاحية: دافنه ماکروناتا , عصاره, پلي¬وينيل ¬الکل, نانوالياف, ضدميکروبي.,
ملخص المقالة :
زمینه و هدف: گياه دافنه ماکروناتا يکي از گونههاي جنس دافنه در ايران است که داراي خواص زيستي منحصر به فرد بوده و از ديرباز بهعنوان يک گياه دارويي استفاده شده است. در اين مطالعه، نانوالياف پليمري زيستسازگار از پليوينيل الکل و عصاره گياه دافنه ماکروناتا به عنوان پوشش ضدميکروبي با کارآيي بالا به روش الکتروريسي تهيه و خواص ضدميکروبي آن بر روي باکتري های گرممثبت، گرممنفي و قارچ بررسي شد.
روش بررسی: در این تحقیق محلول پليمري با درصد وزني/وزني 12 درصد از پليمر پليوينيل الکل تهيه شد و 2 ميليليتر، از عصاره گياهي به 10 ميليليتر از محلول پليمري افزوده شد. به منظور تهيه نانوالياف، شرايط بهينه دستگاه الکتروريسي شامل ولتاژ 17 کيلوولت، نرخ تزريق محلول 3 ميليليتر بر ساعت، فاصله سر نازل تا جمعکننده 7 سانتيمتر و سرعت جمعکننده 100 دور بر دقيقه تنظيم شد.
یافته ها: بعد از تهيه لايه پليمري، مورفولوژي و قطر نانوالياف به کمک تصوير ميکروسکوپ الکتروني روبشي معين شد و قطر متوسط نانوالياف تهيه شده در شرايط بهينه، برابر 80 نانومتر بهدست آمد. بررسي فعاليت ضدميکروبي اين پوشش نشان داد که اين ساختار اثر ضدميکروبي قابلتوجهی بر روي باکتريها نشان ميدهد، به طوري که بيشترين اثر ضدميکروبي بر روي باکتري گرممثبت استرپتوکوکوس پیوژنز با قطر هاله عدم رشد 14 ميليمتر مشاهده شد.
بحث و نتیجه گیری: نانوپوشش حاصل در این پژوهش به دليل ساختار زيستسازگار، غيرسمي، ارزان قيمت و کارآيي بالا ميتواند به عنوان پوشش ضدميکروبي در حوزه زيستي و پزشکي جهت بستهبندي يا پوشش زخم مورد استفاده قرار گيرد.
1. Wang W, Xu J, Fang H, Li Z, Li M. Advances and challenges in medicinal plant breeding. Plant Science. 2020; 298:110573.
2. Bahmani M, Shirzad H, Majlesi M, Shahinfard N, Rafieian-Kopaei M. A review study on analgesic applications of Iranian medicinal plants. Asian Pacific Journal of Tropical Medicine. 2014; 7:S43-S53.
3. Rajput M, Kumar N. Medicinal plants: A potential source of novel bioactive compounds showing antimicrobial efficacy against pathogens infecting hair and scalp. Gene Reports. 2020;21:100879.
4. Hou X, Hou X, Li L. Chemical constituents from the flower buds of Daphne genkwa (Thymelaeaceae). Biochemical Systematics and Ecology. 2020;91:104055.
5. Khodadadian Z, Hassanpour-Ezatti M, Mousavi SZ, Asgarpanah J. Analgesic and anti-inflammatory potential of aerial parts of the Daphne mucronata Royle extract in mice: Opioid-independent action. Asian Pacific Journal of Tropical Biomedicine. 2016;6(3):198-201.
6. Abolmaali SM-R, Tarkesh M, Bashari H. MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecological Informatics. 2018;43:116-23.
7. Zheng Y, Xie Q, Wang H, Hu Y, Ren B, Li X. Recent advances in plant polysaccharide-mediated nano drug delivery systems. International Journal of Biological Macromolecules. 2020;165:2668-83.
8. Zhang W, He Z, Han Y, Jiang Q, Zhan C, Zhang K, et al. Structural design and environmental applications of electrospun nanofibers. Composites Part A: Applied Science and Manufacturing. 2020;137:106009.
9. Ibrahim HM, Klingner A. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing. 2020;90:106647.
10. Topuz F, Uyar T. Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Research International. 2020;130:108927.
11. Homaeigohar S, Boccaccini AR. Antibacterial biohybrid nanofibers for wound dressings. Acta Biomaterialia. 2020;107:25-49.
12. Kim JH, Lee H, Jatoi AW, Im SS, Lee JS, Kim I-S. Juniperus chinensis extracts loaded PVA nanofiber: Enhanced antibacterial activity. Materials Letters. 2016;181:367-70.
13. Aruan NM, Sriyanti I, Edikresnha D, Suciati T, Munir MM, Khairurrijal. Polyvinyl Alcohol/Soursop Leaves Extract Composite Nanofibers Synthesized Using Electrospinning Technique and their Potential as Antibacterial Wound Dressing. Procedia Engineering. 2017;170:31-5.
14. Abubakar A, Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy And Bioallied Sciences. 2020;12(1):1-10.
15. Hedayati M, Yazdanparast R, Fasihi H, Azizi F. Anti-tumor Activity of Daphne mucronata Extract and its Effects on TNF-a Receptors and TNF-a Release in Cultured Human Monocytes. Pharmaceutical Biology. 2003;41(3):194-8.
16. Supaphol P, Chuangchote S. On the electrospinning of poly(vinyl alcohol) nanofiber mats: A revisit. Journal of Applied Polymer Science. 2008;108(2):969-78.
17. Tian H, Yuan L, Wang J, Wu H, Wang H, Xiang A, et al. Electrospinning of polyvinyl alcohol into crosslinked nanofibers: An approach to fabricate functional adsorbent for heavy metals. Journal of Hazardous Materials. 2019;378:120751.
18. Liu B, Hu T, Yan W. Authentication of the Bilberry Extracts by an HPLC Fingerprint Method Combining Reference Standard Extracts. Molecules. 2020;25(11):2514.
19. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis. 2016;6(2):71-9.
20. Guimarães AC, Meireles LM, Lemos MF, Guimarães MC, Endringer DC, Fronza M, et al. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules. 2019;24(13).
21. Inoue M, Suzuki R, Koide T, Sakaguchi N, Ogihara Y, Yabu Y. Antioxidant, Gallic Acid, Induces Apoptosis in HL-60RG Cells. Biochemical and Biophysical Research Communications. 1994;204(2):898-904.
22. Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J. Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. International Journal of Obesity. 2000;24(2):252-8.
23. Garg A, Garg S, Zaneveld LJD, Singla AK. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytotherapy Research. 2001;15(8):655-69.
24. Panahi Kokhdan E, Mianabadi M, Sadeghi H, Khalaf M. The Effects of Two Species of Daphne, Betulin and Betulinic Acid on Alkaline Phosphatase Activity in Two Human Cancer Cell lines, K562 and MCF-7. yums-armaghan. 2014;18(11):900-9.
25. Zaidi A, Bukhari S, Khan F, Noor T, Iqbal N. Ethnobotanical, Phytochemical and Pharmacological Aspects of Daphne mucronata (Thymeleaceae). Tropical Journal of Pharmaceutical Research. 2015;14:1517-.
26. Ashraf I, Zubair M, Rizwan K, Rasool N, Jamil M, Khan SA, et al. Chemical composition, antioxidant and antimicrobial potential of essential oils from different parts of Daphne mucronata Royle. Chemistry Central Journal. 2018;12(1):135.
27. Li X, Kanjwal MA, Lin L, Chronakis IS. Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids and Surfaces B: Biointerfaces. 2013;103:182-8.
28. Javidnia K, Miri R, Bahri Najafi R, Khademzadeh Jahromi N. A PRELIMINARY STUDY ON THE BIOLOGICAL ACTIVITY OF DAPHNE MUCRONATA ROYLE. DARU JOURNAL OF PHARMACEUTICAL SCIENCE. 2003;11(1):28-31.
29. Talei GR, Meshkat Alsadat M, Delfan B. ANTIBACTERIAL ACTIVITY OF FRUIT, LEAVES EXTRACTS OF ARTEMISIA PERSICA BOISS, RHUS CORIARIA, EPHEDRA INTERMEDIA AND DAPHNE MUCRONATA ROYLE OF LORESTAN. YAFTEH. 2004;5(18):19-23.