بررسی و تحلیل پارامترهای تاثیر گذار بر روی عملکرد و راندمان انرژی تولید بیودیزل حاصل از روغن پسماند
الموضوعات :گل محمد خوب بخت 1 , محمود کریمی 2
1 - استادیار، گروه مهندسی کشاورزی، دانشگاه پیام نور، تهران، ایران * (مسوول مکاتبات)
2 - استادیار،گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه اراک، ایران
الکلمات المفتاحية: نسبت مولی, دما, انرژی, زمان, بیودیزل,
ملخص المقالة :
زمینه و هدف: افزایش مداوم تقاضای انرژی و کم شدن منابع نفت خام منجر به جستجو برای سوخت های تجدید پذیر و پایدار شده است. بیودیزل به خاطر این که دوست دار محیط زیست است بهترین جایگزین سوخت دیزل می باشد. بیودیزل به طور معمول از روش ترانس استریفیکاسیون تولید می شود. در این تحقیق به بررسی بازده انرژی و تاثیر زمان و دمای واکنش و همچنین نسبت مولی متانول به روغن بر روی تولید بیودیزل حاصل از روغن پسماند پرداخته شد.روش بررسی: در این مطالعه انرژی نهاده هایی هم چون نیروی انسانی، پسماند روغن خوراکی، الکل (متانول)، کاتالیست (KOH)، الکتریسیته و انرژی ماشین تولید بیودیزل و انرژی خروجی شامل: بیودیزل، گلیسرول، اضافات الکل، آب، صابون، مونوگلیسرید و دی گلیسیرید برای محاسبه بازده انرژی، محاسبه شد. همچنین برای محاسبه عملکرد، وزن استرهای اسید چرب و تری گلیسیرید روغن پسماند حاصل از واکنش اندازه گیری شد.یافته ها: نتایج این تحقیق نشان داد این سه پارامتر زمان و دمای واکنش و همچنین نسبت مولی متانول به روغن بر عملکرد واکنش ترنس استریفیکاسیون به روش مرسوم تاثیر گذار بود. نسبت مولی متانول به روغن 6:1، زمان واکنش 60 دقیقه و دمای واکنش 60 درجه سلسیوس با تبدیل 95 درصد تری گلیسرید به استرهای اسید چرب بیش ترین عملکرد واکنش را در میان تیمارهای مورد آزمایش به خود اختصاص داد.بحث و نتیجه گیری: در تولید بیودیزل راندمان مصرف انرژی برای نسبت های مولی متانول به روغن 3:1، 6:1 و 9:1 به ترتیب 69، 89 و 76 درصد برآورد شد. همچنین راندمان مصرف انرژی برای دما های واکنش 40، 50 و 60 درجه سلسیوس به ترتیب 72، 83 و 95 درصد برآورد شد.
1- Sancho Araujo, V.K.W., Hamacher, S., Scavarda, L.F., 2010. Economic assessment of biodiesel production from waste frying oils. Bioresource Technology 101, 4415–4422.
2- Ghobadian, B., Rahimi, H. Biofuels-Past, Peresent and Future Perspective, the 4th International Iran and Russia Conference, Shahre kord, Iran, September, 2004.
3- Dantas, M.B., Almeida, A.A.F., Conceic¸ ão, M.M., Fernandes Jr., V.J., Santos, I.M.G., Silva, F.C., Soledade, L.E.B., Souza, A.G. 2007. CHARACTERIZATION AND KINETIC COMPENSATION EFFECT OF CORN BIODIESEL. Journal of Thermal Analysis and Calorimetry 87, 847–851.
4- Ma, F. and Hanna, M.A. 1999. Biodiesel production: a review. Bioresource Technology 70, 1-15.
5- Meher, L.C., Vidya Sagar, D., Naik, S.N. 2006. Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews 10, 248–268.
6- Ceccon, C. and R. Giovanardi, 2002. Energy balance of four systems hn north eastern Italy. Italy Journal Agron, VOL.6. pp 73-78.
7- Sprules, F.J. 1950. Production of fatty esters. Google Patents.
8- Singh, S.P., Singh, D. 2010. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews 14,200–216.
9- Leung, D.Y.C., Guo, Y., 2006. Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process Technology 87, 883–890.
10- Zhang, Y., Dube, M.A., McLean, D.D., Kates, M. 2003. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90, 229–240.
11- Freedman, B., Butterfield, R.O., Pryde, E.H., 1986. Transesterification kinetics of soybean oil. Journal of American Oil Chemist’ Society 63, 1375–1380.
12- Alamu, O.J., Waheed, M.A., Jekayinfa, S.O., 2007. Biodiesel production from Nigerian palm kernel oil: effect of KOH concentration on yield. Energy for Sustainable Development 11, 77–82.
13- Eevera, T., Rajendran, K., Saradha, S., 2009. Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renewable Energy 34, 762–765.
14- Ma, F., Clements, L.D., Hanna, M.A., 1998. The effects of catalyst, free fatty acids, and water on transesterification of beef tallow. Transactions of the American Society of Agricaltural Engineers 41, 1261–1264.
15- Gui, M.M., Lee, K.T., Bhatia, S., 2008. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33, 1646–1653.
16- Mohammadshirazi, A., Akram, A., Rafiee, S., Mousavi Avval, S.H., Bagheri, E., 2012. An analysis of energy use and relation between energy inputs and yield in tangerine production. Renewable and Sustainable Energy Reviews 16, 4515–4521.
_||_
1- Sancho Araujo, V.K.W., Hamacher, S., Scavarda, L.F., 2010. Economic assessment of biodiesel production from waste frying oils. Bioresource Technology 101, 4415–4422.
2- Ghobadian, B., Rahimi, H. Biofuels-Past, Peresent and Future Perspective, the 4th International Iran and Russia Conference, Shahre kord, Iran, September, 2004.
3- Dantas, M.B., Almeida, A.A.F., Conceic¸ ão, M.M., Fernandes Jr., V.J., Santos, I.M.G., Silva, F.C., Soledade, L.E.B., Souza, A.G. 2007. CHARACTERIZATION AND KINETIC COMPENSATION EFFECT OF CORN BIODIESEL. Journal of Thermal Analysis and Calorimetry 87, 847–851.
4- Ma, F. and Hanna, M.A. 1999. Biodiesel production: a review. Bioresource Technology 70, 1-15.
5- Meher, L.C., Vidya Sagar, D., Naik, S.N. 2006. Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews 10, 248–268.
6- Ceccon, C. and R. Giovanardi, 2002. Energy balance of four systems hn north eastern Italy. Italy Journal Agron, VOL.6. pp 73-78.
7- Sprules, F.J. 1950. Production of fatty esters. Google Patents.
8- Singh, S.P., Singh, D. 2010. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews 14,200–216.
9- Leung, D.Y.C., Guo, Y., 2006. Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process Technology 87, 883–890.
10- Zhang, Y., Dube, M.A., McLean, D.D., Kates, M. 2003. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90, 229–240.
11- Freedman, B., Butterfield, R.O., Pryde, E.H., 1986. Transesterification kinetics of soybean oil. Journal of American Oil Chemist’ Society 63, 1375–1380.
12- Alamu, O.J., Waheed, M.A., Jekayinfa, S.O., 2007. Biodiesel production from Nigerian palm kernel oil: effect of KOH concentration on yield. Energy for Sustainable Development 11, 77–82.
13- Eevera, T., Rajendran, K., Saradha, S., 2009. Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renewable Energy 34, 762–765.
14- Ma, F., Clements, L.D., Hanna, M.A., 1998. The effects of catalyst, free fatty acids, and water on transesterification of beef tallow. Transactions of the American Society of Agricaltural Engineers 41, 1261–1264.
15- Gui, M.M., Lee, K.T., Bhatia, S., 2008. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33, 1646–1653.
16- Mohammadshirazi, A., Akram, A., Rafiee, S., Mousavi Avval, S.H., Bagheri, E., 2012. An analysis of energy use and relation between energy inputs and yield in tangerine production. Renewable and Sustainable Energy Reviews 16, 4515–4521.