بررسی تغییرات مکانی و زمانی معیارهای کیفی آب زیرزمینی دشت همدان- بهار با استفاده از (GIS) طی بازهی زمانی 10 ساله
الموضوعات :
سحر اقبالیان
1
,
امید بهمنی
2
1 - کارشناسی ارشد رشتهی آبیاری زهکشی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران
2 - استادیار رشتهی آبیاری زهکشی، گروه علوم و مهندسی آب، دانشکده کشاورزی دانشگاه بوعلی سینا، همدان، ایران* (مسوول مکاتبات)
تاريخ الإرسال : 16 السبت , ربيع الثاني, 1438
تاريخ التأكيد : 23 الخميس , رجب, 1438
تاريخ الإصدار : 28 الخميس , رمضان, 1441
الکلمات المفتاحية:
آبخوان اصلی همدان- بهار,
روشهای معین,
زمین آمار,
کیفیت آب زیرزمینی,
ملخص المقالة :
زمینه وهدف: آب های زیرزمینی از منابع ارزش مند تهیه آب شرب، کشاورزی و صنعت دراکثر مناطق ایران هستند. تغییرات کیفی آب های زیرزمینی می تواند در اثر فعالیت های انسان وتوسعه فعالیت های صنعتی صورت گیرد. بررسی و مطالعه این منابع به منظور حفظ و اصلاح کیفیت آن ها ضروری است. هدف از این مطالعه پهنه بندی و منطقه ای نمودن خصوصیات نقطه ای پارامتر های مورد بررسی است. در نهایت برای هر یک از متغیرها بهترین روش پهنه بندی و مناطق مجاز و آلوده در مصارف کشاورزی در دشت مشخص گردید و روند تغییرات این متغیرها در طی یک دوره ی 10 ساله ی آماری بررسی شد.
مواد و روش ها: در این تحقیق از داده های کیفی آب زیرزمینی دشت همدان- بهار در یک بازه ی زمانی 10 ساله استفاده شد. متغیرهای شوری، باقی مانده خشک، نسبت جذب سدیم، بی کربنات، PH، مقدار کلر و سدیم، با استفاده از روش های زمین آمار از جمله کریجینگ معمولی(OK)، (با مدل سمی واریوگرام دایره ای، گوسی، نمایی، کروی) و روش های معین نظیر عکس فاصله IDW، تابع شعاعی RBF، تخمین گر عامGPI و تخمین گر موضعی LPI به وسیله نرم افزار ARCGIS9.3 پهنه بندی گردیدند.
یافته ها: پس از تحلیل معیار های آماری بهترین روش پهنه بندی برای متغیر شوری (EC) روش عکس فاصله IDW، باقی مانده خشک(TDS) روش تابع شعاعی(RBF)، بی کربنات(HCO3) روش کریجینگ(OK) (نمایی)، (PH) روش عکس فاصله(IDW)، کلر(CL) تابع شعاعی(RBF)، سدیم(Na) روش کریجینگ(OK) (نمایی) و برای متغیر نسبت جذب سدیم(SAR) روش تابع شعاعی(RBF) در آبخوان اصلی همدان- بهار معرفی شدند.
بحث و نتیجه گیری: با توجه به روش های تعیین شده پهنه بندی تمام معیارها برای سال های84 ، 88 و 93 انجام شد و تغییرات کیفیت آبخوان طی یک دوره ی 10ساله برای هر یک از متغیرها نشان داد که بیش ترین تغییرات در مقدار سدیم بوده که محدوده غیر مجاز آن برای مصارف کشاورزی (Na>3) از سال 84 تا 93 به مقدار 21/3 درصد افزایش یافته است.
المصادر:
- Pourmoghadas, H. 2002. Investigation of groundwater quality in Lenjan city. School of Public Health and Institute of Public Health Research. 31-40. (In Persian)
- Dehghani, F., Rahnamaei, R., Malakoti, M.j., Saadat, S., 2013. Investigating the status of calcium-magnesium ratio in some irrigation water in Iran. Journal of Water Research in Agriculture. 26, 113-125. (In Persian)
- Tghizadeh Mehjerdy, R., Mahmoodi, S., Khazaii, S.M., Haydari, A., 2009., Study of local groundwater salinity change using geostatisticsc (A Case study: Rafsanjan, Iran). 2th national conference on Environment engineering .Tehran University, Iran. (In Persian)
- Rezaei, M., Davatgar, N., Tajdari, Kh., Abolfar, B., 2010. Investigation the Spatial Variability of Some Important Groundwater Quality Factors in Guilan, Iran. Journal of water and soil. 24,932-941. (In Persian)
- Sun, Y., Shaozhong, K., Li, F., Zhang, L., 2009. Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of northwest China. Journal of Environmental Modelling & Software. 24(10), 1163–1170.
- Zehtabian, G.h., JanFaza, A.T., Asgari, H., Nematolahi, M.J., 2010. Modeling of ground water spatial distribution for some chemical properties (Case study in Garmsar watershed). Journal of Range and Desert research. 17, 61-73. (In Persian).
- Ahmed, S., 2002. Groundwater monitoring network design: application of geostatistics with a few case studies from a granitic aquifer in a semiarid region. American Journal. 65(5), 1564-1571.
Nas, B., 2009. Geostatistical approach to assessment of spatial distribution of groundwater quality. Environmental Studying. 6,1073-1082
Dash, J.P., Sarangi, A., Singh, D.K., 2010. Spatial variability of groundwater depth and quality parameters in National Capital Territory of Delhi. Journal of Environmental Management. 45, 640-650.
Kresic, N., 1997. Hydrogeology and groundwater modeling. Lewis Publishers, USA.
Yamamoto, J.K., 2000. An alternative measure of the reliability of ordinary kriging estimates. Journal of Mathematical Geology. 32,489-497.
Hakan, A., 2012. Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey. Journal of Agricultural Water Management. 113,57-63.
Maria, P.M., Luís, R., 2010. Nitrate probability mapping in the northern aquifer alluvial system of the river Tagus (Portugal) using Disjunctive Kriging. Journal of Science of the Total Environment. 408,1021–1034.
Istok, J.D., Cooper, R.M., 1998. Geostatistics Applied to Groundwater Pollution Global Estimates. Journal of Environmental Engineering. 114(4), 915-928.
Balai, H., Khalilian, S., Ahmadian, M., 2010. Investigating the role of water pricing in agricultural sector on the balance of groundwater resources. Journal of agriculture economics and development. 24, 185-194. (In Persian)
Rahmani, A.R., Sadahi, M., 2004. Prediction of Groundwater level changes in the plain of Hamadan-Bahar using time series model. Journal of water and wastewater. 15, 42-49. (In Persian)
Johnston, K., Ver Hoef, J.M., Krivoruchko, K., Lucas, N., 2001. Using ArcGIS Geoststistical Analyst. Printed in the United State of America.
Webster, R., Oliver, M., 2001. Geostatistics for environmental scientists. Environmental scientists. 2nd edition. 330p.
Jafari, R., Bakhshandemehr, L., 2014. Analyzing the Spatial Variations of Groundwater Salinity and Alkalinity in Isfahan Province Using Geostatistics. Journal of water and soil science. 18 (68),183-195. (In Persian)
Ghasemi, A., Shahsavar, A., Yaghubi Kikale, B., 2010. Assessment of changes in groundwater quality and quantity of Hamedan-Bahar plain. Journal of plant and Ecosystem. 6(23), 109-127. (In Persian)
Shabani, M. 2008. Determination of the most appropriate method of land statistics in preparing a map of PH and TDS variations of groundwater (Case study: Arsanjan Plain). Journal of water engineering. 1, 47-58. (In Persian)
Yazdanimoghadam, Y., Vali, A., Ghazavi, R., 2014. Investigation of geostatistic methods in qualitative zonation of groundwater resources in Kashan plain. 25(3), 171-185. (In Persian)
Jahanshahi, A., Rouhi Moghadam, E., Dehvari, A., 2013. Investigation groundwater quality parameters using GIS and geostatistic (case study: Shahr-Babak plain aquifer). Journal of water and soil science. 2(24), 183-197. (In Persian)
Alizadeh, A., 2010. Soil, Water, Plant relationship. Ferdowsi university of Mashhad. 11nd edition. 616p. (In Persian)
Nazarizade, F., Arshadian, B., Zandvakili, K., 2007. Investigation of spatial variations of groundwater quality in Balarood plain in Khuzestan province. The first regional conference on optimal utilization of water sources in the Karoon and Zayandeh Rood areas. Shahr kord. Iran. (In Persian)
Samin, M., Soltani, J., Zeraatcar, Z., Moasheri, S.A., Sarani, N., 2012. Spatial estimation of groundwater quality parameters based on water salinity data using kriging and cokriging methods. International Conference on Transport, Environment and Civil Engineering. 25-26 August, Kuala Limpur, Malaysia. (In Persian)
_||_
- Pourmoghadas, H. 2002. Investigation of groundwater quality in Lenjan city. School of Public Health and Institute of Public Health Research. 31-40. (In Persian)
- Dehghani, F., Rahnamaei, R., Malakoti, M.j., Saadat, S., 2013. Investigating the status of calcium-magnesium ratio in some irrigation water in Iran. Journal of Water Research in Agriculture. 26, 113-125. (In Persian)
- Tghizadeh Mehjerdy, R., Mahmoodi, S., Khazaii, S.M., Haydari, A., 2009., Study of local groundwater salinity change using geostatisticsc (A Case study: Rafsanjan, Iran). 2th national conference on Environment engineering .Tehran University, Iran. (In Persian)
- Rezaei, M., Davatgar, N., Tajdari, Kh., Abolfar, B., 2010. Investigation the Spatial Variability of Some Important Groundwater Quality Factors in Guilan, Iran. Journal of water and soil. 24,932-941. (In Persian)
- Sun, Y., Shaozhong, K., Li, F., Zhang, L., 2009. Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of northwest China. Journal of Environmental Modelling & Software. 24(10), 1163–1170.
- Zehtabian, G.h., JanFaza, A.T., Asgari, H., Nematolahi, M.J., 2010. Modeling of ground water spatial distribution for some chemical properties (Case study in Garmsar watershed). Journal of Range and Desert research. 17, 61-73. (In Persian).
- Ahmed, S., 2002. Groundwater monitoring network design: application of geostatistics with a few case studies from a granitic aquifer in a semiarid region. American Journal. 65(5), 1564-1571.
Nas, B., 2009. Geostatistical approach to assessment of spatial distribution of groundwater quality. Environmental Studying. 6,1073-1082
Dash, J.P., Sarangi, A., Singh, D.K., 2010. Spatial variability of groundwater depth and quality parameters in National Capital Territory of Delhi. Journal of Environmental Management. 45, 640-650.
Kresic, N., 1997. Hydrogeology and groundwater modeling. Lewis Publishers, USA.
Yamamoto, J.K., 2000. An alternative measure of the reliability of ordinary kriging estimates. Journal of Mathematical Geology. 32,489-497.
Hakan, A., 2012. Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey. Journal of Agricultural Water Management. 113,57-63.
Maria, P.M., Luís, R., 2010. Nitrate probability mapping in the northern aquifer alluvial system of the river Tagus (Portugal) using Disjunctive Kriging. Journal of Science of the Total Environment. 408,1021–1034.
Istok, J.D., Cooper, R.M., 1998. Geostatistics Applied to Groundwater Pollution Global Estimates. Journal of Environmental Engineering. 114(4), 915-928.
Balai, H., Khalilian, S., Ahmadian, M., 2010. Investigating the role of water pricing in agricultural sector on the balance of groundwater resources. Journal of agriculture economics and development. 24, 185-194. (In Persian)
Rahmani, A.R., Sadahi, M., 2004. Prediction of Groundwater level changes in the plain of Hamadan-Bahar using time series model. Journal of water and wastewater. 15, 42-49. (In Persian)
Johnston, K., Ver Hoef, J.M., Krivoruchko, K., Lucas, N., 2001. Using ArcGIS Geoststistical Analyst. Printed in the United State of America.
Webster, R., Oliver, M., 2001. Geostatistics for environmental scientists. Environmental scientists. 2nd edition. 330p.
Jafari, R., Bakhshandemehr, L., 2014. Analyzing the Spatial Variations of Groundwater Salinity and Alkalinity in Isfahan Province Using Geostatistics. Journal of water and soil science. 18 (68),183-195. (In Persian)
Ghasemi, A., Shahsavar, A., Yaghubi Kikale, B., 2010. Assessment of changes in groundwater quality and quantity of Hamedan-Bahar plain. Journal of plant and Ecosystem. 6(23), 109-127. (In Persian)
Shabani, M. 2008. Determination of the most appropriate method of land statistics in preparing a map of PH and TDS variations of groundwater (Case study: Arsanjan Plain). Journal of water engineering. 1, 47-58. (In Persian)
Yazdanimoghadam, Y., Vali, A., Ghazavi, R., 2014. Investigation of geostatistic methods in qualitative zonation of groundwater resources in Kashan plain. 25(3), 171-185. (In Persian)
Jahanshahi, A., Rouhi Moghadam, E., Dehvari, A., 2013. Investigation groundwater quality parameters using GIS and geostatistic (case study: Shahr-Babak plain aquifer). Journal of water and soil science. 2(24), 183-197. (In Persian)
Alizadeh, A., 2010. Soil, Water, Plant relationship. Ferdowsi university of Mashhad. 11nd edition. 616p. (In Persian)
Nazarizade, F., Arshadian, B., Zandvakili, K., 2007. Investigation of spatial variations of groundwater quality in Balarood plain in Khuzestan province. The first regional conference on optimal utilization of water sources in the Karoon and Zayandeh Rood areas. Shahr kord. Iran. (In Persian)
Samin, M., Soltani, J., Zeraatcar, Z., Moasheri, S.A., Sarani, N., 2012. Spatial estimation of groundwater quality parameters based on water salinity data using kriging and cokriging methods. International Conference on Transport, Environment and Civil Engineering. 25-26 August, Kuala Limpur, Malaysia. (In Persian)