اثر مکمل یاری سلنیوم بر سطوح سرمی کراتین کیناز، لاکتات دهیدروژناز و قدرت عضلانی در وضعیت استراحت و متعاقب یک مسابقه فوتبال در بازیکنان فوتبال جوان
الموضوعات :
1 - کارشناسی ارشد فیزیولوژی ورزشی، گروه تربیت بدنی و علوم ورزشی، واحد سقز، دانشگاه آزاد اسلامی، سقز، ایران
2 - استادیار گروه تربیت بدنی و علوم ورزشی، واحد سقز، دانشگاه آزاد اسلامی، سقز، ایران
الکلمات المفتاحية: بازیکن فوتبال, سلنیوم, قدرت عضلانی, کراتین کیناز, لاکتات دهیدروژناز,
ملخص المقالة :
مقدمه: تحقیقات اندکی در زمینه اثر مکمل یاری سلنیوم بر شاخص های آسیب عضلانی در افراد ورزشکار صورت گرفته است. هدف از تحقیق حاضر بررسی اثر مکمل یاری سلنیوم بر سطوح سرمی کراتین کیناز (CK)، لاکتات دهیدروژناز (LDH) و قدرت عضلانی در وضعیت استراحت و متعاقب یک مسابقه فوتبال در بازیکنان فوتبال جوان بود. مواد و روش ها: روش تحقیق حاضر از نوع نیمه تجربی بود و 19 بازیکن فوتبال جوان از میان بازیکنان فوتبال مرد شهرستان سقز انتخاب شده و به صورت تصادفی در دو گروه آزمایش (مکمل، 10=n) و کنترل (دارونما، 9=n) قرار گرفتند. ارزیابی ها در سه مرحله (قبل از مکمل یاری، پس از مکمل یاری و بلافاصله پس از یک مسابقه فوتبال) صورت گرفت. ویژگی های عمومی آزمودنی ها، قدرت عضلانی (پرس سینه و پرس پا) و سطوحِ در گردش آنزیم های LDH و CK اندازه گیری شد. دوره مکمل یاری یک ماه (روزانه یک کپسول 200 میکروگرمی سلنیوم) بود. گروه دارونما نیز هر روز یک کپسول نشاسته مصرف نمودند. به منظور تجزیه و تحلیل داده ها از آزمون تحلیل واریانس دو عاملی با اندازه گیری های مکرر در سطح معنی داری 05/0>P استفاده شد. یافته ها: مکمل یاری سلنیوم بر قدرت عضلانی (پرس سینه 790/0=p، پرس پا 912/0=p) و سطوح استراحتی و متعاقب یک مسابقه فوتبال CK (051/0=p) و LDH (244/0=p) تاثیر معنی داری ندارد. نتیجه گیری: به نظر نمی رسد مکمل یاری سلنیوم به مدت یک ماه و با مقدار مصرف روزانه 200 میکروگرم اثر مفید یا مضری بر قدرت عضلانی و سطوحِ در گردش آنزیم های شاخص آسیب عضلانی بازیکنان فوتبال جوان در وضعیت استراحت و متعاقب یک مسابقه فوتبال داشته باشد. تحقیقات بیشتری برای آشکار ساختن جوانب مختلف موضوع لازم می باشد.
Akil, M., Gurbuz, U., Bicer, M., Sivrikaya, A., Mogulkoc, R. & Baltaci, A. K. (2011).
Effect of selenium supplementation on lipid peroxidation, antioxidant enzymes, and lactate levels in rats immediately after acute swimming exercise. Biological Trace Element Research, 142(3), 651-9.
Amirdizaj, V. D. & Mocheshi, S. S. (2016). Muscle injury and oxidative stress following the use of selenium supplements and exhaustive aerobic exercise in young physically-active females. Journal of Kermanshah University of Medical Sciences, 20(1), 1-5
Baird, M. F., Graham, S. M., Baker, J. S. & Bickerstaff, G. F. (2012). Creatine kinase- and exercise-related muscle damage implications for muscle performance and recovery. Journal of Nutrition and Metabolism, 2012, 960363.
Baltaci, A. K., Mogulkoc, R., Akil, M. & Bicer, M. (2016). Review - Selenium - Its metabolism and relation to exercise. Pakistan Journal of Pharmaceutical Sciences, 29(5), 1719-1725.
Callegari, G. A., Novaes, J. S., Neto, G. R., Dias, I., Garrido, N. D. & Dani, C. (2017). Creatine kinase and lactate dehydrogenase responses after different resistance and aerobic exercise protocols. Journal of Human Kinetics, 58, 65-72.
Chariot, P. & Bignani, O. (2003). Skeletal muscle disorders associated with selenium deficiency in humans. Muscle Nerve, 27(6), 662-8.
Dallak, M. (2017). A synergistic protective effect of selenium and taurine against experimentally induced myocardial infarction in rats. Archives of Physiology and Biochemistry, 123(5), 344-355.
Fischer, J., Bosse, A. & Pallauf, J. (2008). Effect of selenium deficiency on the antioxidative status and muscle damage in growing turkeys. Archives of Animal Nutrition, 62(6), 485-97.
Jablonska, E., Reszka, E., Gromadzinska, J., Wieczorek, E., Krol, M. B., Raimondi, S. (2016). The Effect of selenium supplementation on glucose homeostasis and the expression of genes related to glucose metabolism. Nutrients, 8(12), pii:E772.
Karunasinghe, N., Zhu, S. & Ferguson, L. R. (2016). Benefits of selenium supplementation on leukocyte DNA integrity interact with dietary micronutrients: a short communication. Nutrients, 8(5), 249.
Kim, S. S., Koo, J. H., Kwon, I. S., Oh, Y. S., Lee, S. J., Kim, E. J. (2011). Exercise training and selenium or a combined treatment ameliorates aberrant expression of glucose and lactate metabolic proteins in skeletal muscle in a rodent model of diabetes. Nutrition Research and Practice, 5(3), 205-13.
Lauretani, F., Semba, R. D., Bandinelli, S., Ray, A.L., Guralnik, J. M. & Ferrucci, L. (2007). Association of low plasma selenium concentrations with poor muscle strength in older community-dwelling adults: the InCHIANTI Study. American Journal of Clinical Nutrition, 86(2), 347–352.
Logemann, E., Krützfeldt, B. & Rokitzki, L. (1989). Selenium determination in blood plasma samples of high performance athletes. Beiträge zur Gerichtlichen Medizin, 47, 97-102.
Margaritis, I., Rousseau, A. S., Hininger, I., Palazzetti, S., Arnaud, J. & Roussel, A. M. (2005). Increase in selenium requirements with physical activity loads in well-trained athletes is not linear. Biofactors, 23(1), 45-55.
Margaritis, I., Tessier, F., Prou, E., Marconnet, P. & Marini, J. F. (1997). Effects of endurance training on skeletal muscle oxidative capacities with and without selenium supplementation. Journal of Trace Elements in Medicine and Biology, 11(1), 37-43.
Maud, P. J. & Foster, C. (2006). Physiological assessment of human fitness. 2nd ed, Human Kinetics, 185-190.
Omrani, H., Golmohamadi, S., Pasdar, Y., Jasemi, K. & Almasi, A. (2016). Effect of selenium supplementation on lipid profile in hemodialysis patients. Journal of Renal Injury Prevention, 5(4), 179–182.
Rossi, B., Siciliano, G., Risaliti, R. & Muratorio, A. (1990). Effects of selenium and vitamin E on muscular strength and blood parameters in Steinert disease. Italian Journal of Neurological Sciences, 11(1), 37-42.
Şlencu, B. G., Ciobanu, C., Solcan, C., Anton, A., Ciobanu, S., Solcan, G. (2015). Effect of selenium supplementation on serum amylase, lactate dehydrogenase and alkaline phosphatase activities in rats exposed to cadmium or lead. Cercetari Agronomice in Moldova, 47(4), 113–121.
Soares, J.C., Folmer, V. & Rocha, J. B. (2003). Influence of dietary selenium supplementation and exercise on thiol-containing enzymes in mice. Nutrition, 19(7-8), 627-32.
Ueda, Y., Whanger, P. D. & Forsberg, N. E. (1999). The effects of selenium deficiency on differentiation, degradation, and cell lysis of L8 rat skeletal muscle cells. Biological Trace Element Research, 69(1), 1-13.
White, S. H., Johnson, S. E., Bobel, J. M. & Warren, L. K. (2016). Dietary selenium and prolonged exercise alter gene expression and activity of antioxidant enzymes in equine skeletal muscle. Journal of Animal Science, 94(7), 2867-2878.
White, S. H., Wohlgemuth, S., Li, C. & Warren, L. K. (2017). Rapid Communication: Dietary selenium improves skeletal muscle mitochondrial biogenesis in young equine athletes. Journal of Animal Science, 95(9), 4078-4084.
Akil, M., Gurbuz, U., Bicer, M., Sivrikaya, A., Mogulkoc, R. & Baltaci, A. K. (2011).
Effect of selenium supplementation on lipid peroxidation, antioxidant enzymes, and lactate levels in rats immediately after acute swimming exercise. Biological Trace Element Research, 142(3), 651-9.
Amirdizaj, V. D. & Mocheshi, S. S. (2016). Muscle injury and oxidative stress following the use of selenium supplements and exhaustive aerobic exercise in young physically-active females. Journal of Kermanshah University of Medical Sciences, 20(1), 1-5
Baird, M. F., Graham, S. M., Baker, J. S. & Bickerstaff, G. F. (2012). Creatine kinase- and exercise-related muscle damage implications for muscle performance and recovery. Journal of Nutrition and Metabolism, 2012, 960363.
Baltaci, A. K., Mogulkoc, R., Akil, M. & Bicer, M. (2016). Review - Selenium - Its metabolism and relation to exercise. Pakistan Journal of Pharmaceutical Sciences, 29(5), 1719-1725.
Callegari, G. A., Novaes, J. S., Neto, G. R., Dias, I., Garrido, N. D. & Dani, C. (2017). Creatine kinase and lactate dehydrogenase responses after different resistance and aerobic exercise protocols. Journal of Human Kinetics, 58, 65-72.
Chariot, P. & Bignani, O. (2003). Skeletal muscle disorders associated with selenium deficiency in humans. Muscle Nerve, 27(6), 662-8.
Dallak, M. (2017). A synergistic protective effect of selenium and taurine against experimentally induced myocardial infarction in rats. Archives of Physiology and Biochemistry, 123(5), 344-355.
Fischer, J., Bosse, A. & Pallauf, J. (2008). Effect of selenium deficiency on the antioxidative status and muscle damage in growing turkeys. Archives of Animal Nutrition, 62(6), 485-97.
Jablonska, E., Reszka, E., Gromadzinska, J., Wieczorek, E., Krol, M. B., Raimondi, S. (2016). The Effect of selenium supplementation on glucose homeostasis and the expression of genes related to glucose metabolism. Nutrients, 8(12), pii:E772.
Karunasinghe, N., Zhu, S. & Ferguson, L. R. (2016). Benefits of selenium supplementation on leukocyte DNA integrity interact with dietary micronutrients: a short communication. Nutrients, 8(5), 249.
Kim, S. S., Koo, J. H., Kwon, I. S., Oh, Y. S., Lee, S. J., Kim, E. J. (2011). Exercise training and selenium or a combined treatment ameliorates aberrant expression of glucose and lactate metabolic proteins in skeletal muscle in a rodent model of diabetes. Nutrition Research and Practice, 5(3), 205-13.
Lauretani, F., Semba, R. D., Bandinelli, S., Ray, A.L., Guralnik, J. M. & Ferrucci, L. (2007). Association of low plasma selenium concentrations with poor muscle strength in older community-dwelling adults: the InCHIANTI Study. American Journal of Clinical Nutrition, 86(2), 347–352.
Logemann, E., Krützfeldt, B. & Rokitzki, L. (1989). Selenium determination in blood plasma samples of high performance athletes. Beiträge zur Gerichtlichen Medizin, 47, 97-102.
Margaritis, I., Rousseau, A. S., Hininger, I., Palazzetti, S., Arnaud, J. & Roussel, A. M. (2005). Increase in selenium requirements with physical activity loads in well-trained athletes is not linear. Biofactors, 23(1), 45-55.
Margaritis, I., Tessier, F., Prou, E., Marconnet, P. & Marini, J. F. (1997). Effects of endurance training on skeletal muscle oxidative capacities with and without selenium supplementation. Journal of Trace Elements in Medicine and Biology, 11(1), 37-43.
Maud, P. J. & Foster, C. (2006). Physiological assessment of human fitness. 2nd ed, Human Kinetics, 185-190.
Omrani, H., Golmohamadi, S., Pasdar, Y., Jasemi, K. & Almasi, A. (2016). Effect of selenium supplementation on lipid profile in hemodialysis patients. Journal of Renal Injury Prevention, 5(4), 179–182.
Rossi, B., Siciliano, G., Risaliti, R. & Muratorio, A. (1990). Effects of selenium and vitamin E on muscular strength and blood parameters in Steinert disease. Italian Journal of Neurological Sciences, 11(1), 37-42.
Şlencu, B. G., Ciobanu, C., Solcan, C., Anton, A., Ciobanu, S., Solcan, G. (2015). Effect of selenium supplementation on serum amylase, lactate dehydrogenase and alkaline phosphatase activities in rats exposed to cadmium or lead. Cercetari Agronomice in Moldova, 47(4), 113–121.
Soares, J.C., Folmer, V. & Rocha, J. B. (2003). Influence of dietary selenium supplementation and exercise on thiol-containing enzymes in mice. Nutrition, 19(7-8), 627-32.
Ueda, Y., Whanger, P. D. & Forsberg, N. E. (1999). The effects of selenium deficiency on differentiation, degradation, and cell lysis of L8 rat skeletal muscle cells. Biological Trace Element Research, 69(1), 1-13.
White, S. H., Johnson, S. E., Bobel, J. M. & Warren, L. K. (2016). Dietary selenium and prolonged exercise alter gene expression and activity of antioxidant enzymes in equine skeletal muscle. Journal of Animal Science, 94(7), 2867-2878.
White, S. H., Wohlgemuth, S., Li, C. & Warren, L. K. (2017). Rapid Communication: Dietary selenium improves skeletal muscle mitochondrial biogenesis in young equine athletes. Journal of Animal Science, 95(9), 4078-4084.