تاثير نوع و ميزان ماده آلي برفرايند خاکدانه سازي دربافتهاي مختلف خاک در تناوب کشت گندم و ذرت
الموضوعات :مسعود میرزابیکی 1 , نیازعلی ابراهیمی پاک 2 , ابراهیم پذیرا 3 , سعيد سماوات 4
1 - دانش آموخته دکتري واحد علوم و تحقيقات، دانشگاه آزاد اسلامي، تهران، ايران.
2 - دانشيار بخش تحقيقات آبياري، موسسه تحقيقات خاک و آب، سازمان تحقيقات، آموزش و ترويج کشاورزي، کرج، ايران.
3 - استاد گروه خاکشناسي دانشگاه آزادا اسلامي، واحد علوم و تحقيقات. تهران، ايران.
4 - دانشيار بخش تحقيقات حاصل خيزي، موسسه تحقيقات خاک و آب، سازمان تحقيقات، آموزش و ترويج کشاورزي، کرج، ايران.
الکلمات المفتاحية: ساختمان خاک, بافت خاک, کود دامي, کمپوست و خاکدانه ,
ملخص المقالة :
زمينه و هدف: بسياري از پژوهشگران نقش مواد آلي در فرايند خاکدانه سازي را مورد بررسي قرار داده اند، ليکن هرکدام از آنها اين ويژگيها را براي منطقه محدودي به کاربرده اند. در اين پژوهش هدف اين بود که اثرات را در چند اقليم و با دو نوع متفاوت کود آلي در بافتهاي مختلف خاک و در تناوب زراعي به مدت دو سال مورد ارزيابي قرار دهيم. روش پژوهش: به منظور بررسي ميزان تاثير ماده آلي بر فرآيند خاکدانه سازي اين پژوهش در سه نوع بافت خاک و در 6 محدوده وزني قطر خاکدانهها شامل 105-75، 250-105، 500-250، 1000-500، 2000-1000 و 4750-2000 ميکرون که از جامعيت نسبتا بالايي شامل ريزترين تا درشت ترين قطر خاکدانهها بود تحت تاثير سالهاي تناوب کشت (گندم و ذرت) بر ميانگين وزني قطر خاکدانهها در 11 منطقه کشورانجام شد. همچنين تغييرات ميانگين وزني قطر خاکدانهها در حالت شاهد (قبل از کشت) و سال اول و دوم کشت در گياهان گندم و ذرت به طور متوسط مورد بررسي قرار گرفت. در اين آزمايش تاثير ماده آلي بر فرايند خاکدانه سازي در 5 تيمار : 10 ، 20 تن در هکتار کود حيواني، 10 ، 20 تن در هکتار کمپوست و شاهد در آزمايش فاکتوريل در غالب طرح کاملا تصادفي مورد بررسي قرار گرفت. يافته ها: نتايج حاکي از تجمع غالب خاکدانها در محدوده 500-250(40% وزني) و 1000-500 (30%) براي بافت لوم رسي، 250-105 (25%وزني) و 500-250 (30%وزني) براي بافت لوم و 250-105 (40%وزني) براي بافت لوم شني در پيش از آغاز کشت دارد که اين محدوده با توجه به نقش کاملا موثر و مثبت رس در افزايش خاکدانه سازي، بهبود ساختمان خاك و به تبع آن پايداري منافذ خاك شده است. افزايش کودهاي آلي موجب افزايش ميانگين وزني قطر خاکدانهها شده و باعث تشکيل خاکدانه هايي با اندازه 500-250 و 1000-500 ميکرون شد. نتايج تاثير کشتهاي متناوب گندم و ذرت بر مقادير ميانگين وزني قطر خاکدانهها در مقايسه با قبل کشت بخصوص در سال اول کشت نشان داد که با افزايش کودهاي آلي، تشکيل خاکدانه هايي با قطر 1000-500 ميکرون بيشتر شد و درصد فراواني خاکدانههاي با قطر 250-105 و 1000-250، کمترشد. هم چنين نتايج نشان داد که بهبود خاکدانه سازي با افزايش کودهاي آلي در خاک با بافت لوم شني بيشترين و در خاک با بافت لوم رسي کمترين شد. همچنين در تيمارهاي مختلف کود حيواني و کمپوست در هيچ يک از قطر خاکدانهها و در هيچ يک از کلاسهاي بافتي اختلاف معني داري مشاهده نگرديد. و نتايج حاکي از اين است که اعمال تيمارهاي مختلف کودهاي آلي بيشترين تاثير را در خاک لوم شني نسبت به خاک لوم و لوم رسي دارد. نتيجه گيري: به طور کلي و با توجه به نتايج آماري افزودن مواد آلي سبب بهبود فرايند خاکدانه سازي مي گردد و همچنين خاک با بافت لوم شني بيشترين تاثيرپذيري را نسبت به افزايش کودهاي آلي دارد.
Ahmadi Moghadam, z . The Effects of Different Mulches on Temporal Changes on The Some Soil Physical Properties 10.22055-jise.2016.12119.ris. [in Persian]
Angers, A.D. 1998. Water stable aggregation of Quebec silty clay soils: some factors controlling its dynamics. Soil Till. Res. 47: 91-96.
Barral, M.T., Bujan, E., Devesa, R., Iglesias, M.L., and Velasco-Molina, M. 2007. Comparison of the structural stability of pasture and cultivated soils. Science of the Total Environment, 378: 174-178.
Barthes, B.G., Kouoa Kouoa, E., Larre-Larrouy. M.C., Razafimbelo, T.M., de Luca, E.F., Azontonde, A., Neves, C.S., de Freitas, P.L. and Feller, C.L. 2008.
Beare, M.H., Hendrix, P.F. and Coleman, D.C. 1994. Water stable aggregates and organic matter fractions in conventional and no-tillage. Soil Sci. Soc. Am. J. 58: 777-786.
Bertrand, A. R. 1965. Rate of water intake in the field. In Methods of soil analysis, part I, 1 ed. C. A. Black et al., 197–209. Madison, Wisc.: ASA and SSSA.
Black, C.A. 1982. Method of soil analysis, Chemical and microbiological properties, American Society of Agronomy DOI:10.2134/agronmonogr9.2.2ed. 1965.
Bouyoucos GJ, 1962. Hydrometer method improved for making particle size analysis of soils. Agron J 54: 464-465.
Bower, C.A., Reitmeir, R.F., and Fireman, M. 1952. Exchangeable cation analysis of saline and alkali soils. Soil Sci. 73: 251-261.
Bronick, C.J. and Lal, R. 2005. Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio. USA, Soil Till. Res. 81: 239-252.
Chand, M., Abrol, I.P., and Bhumbla, D. R. 1977. A comparison of the effect of eight amendments on soil properties and crop growth in highly sodic soil. Indian Journal of Agricultural Science. 47: 348-354.
Denef K, and Six J, 2005. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. European Journal of Soil Science 56: 469-479.
Dominguez, J., Negrin, M.A., and Rodriguez, C.M. 2001. Aggregate water stability, particle size and soil solution properties in conducive and suppressive soils to Fusarium wilt of banana from Canary island (Spain). Soil Bio. Biochem. 33: 449-455.
Green, V.S., Stott, D.E., Cruz, J.C. and Curi, N. 2007. Tillage impacts on soil biological activity and aggregation in a Brazilian cerrado oxisols. Soil Till. Res. 92: 114-121.
Greenland, D.J., Rimmer, D., and Payne, D. 1975. Determination of the structural stability class of English & Welsh soils, using a water coherence test. J. Soil Sci., 2 6: 294-303.
Hajabbasi, M.A., Basalatpour, A. and Maleki, A.R. 2007. Effect of shifting rangeland to farmland on some physical and chemical properties of south and southwest soils of Isfahan. J. Sci. Tech. of Agri. Natural Resou., 11(42): 525- 534.
Hamblin, A.P. 1977. Structural features of aggregates in some East Anglian silt soils. J. Soil Sci. 28: 23-28.
Jang, F., Zhang, G.L., Yang, J.L., Li, D.C., Zhao, Y.G., Liu, F., Yang, R.M. and Yang, F. 2014. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes. Journal of Hydrology. 519: 3086-3093.
Kandiah, A. 1976. Influence of organic matter on the erodibility of a saturated illitic soil. Mededelingen-van-de-faculteit-landbouwwetenschappen. 41: 397-406.
Kanwar, J.S., Bhumbla, D. R. and Singh, N.T. 1965. Studies on the reclamation of saline and sodic soils in the Punjab. Indian Journal of Agricultural Science. 35: 43-51.
Kemper, W.D, and R.C. Rosenau. 1986. Aggregate stability and size distribution, in: Methods of Soil
Khazai, A., Mosadeghi, M.R. and Mahboubi, A.R. 2008. Effect of laboratory condition, organic matter content, clay and calcium carbonates on mean weight diameter and tensile strength of aggregates in some Hamadan soils. J. Sci. Tech. of Agri. Natural Resource 12(44): 123-134.
Lebron, I., Suarez, D., and Yoshida, T. 2002. Gypsum effect on the aggregate size and geometry of three sodic soils under reclamation. Soil Sci. Soc. Am. J. 66: 92-98.
Mahmoodabadi, M. 2011. Consecutive Application of Organic Matter and Sodicity on Secondary Particle Size Distribution. E.E.R.Journal-article-75-ris. [in Persian]
Mbagwu, J.S.C. 1989. Specific dispersion energy of soil aggregates in relation to field and laboratory measured stability indeces and physical properties. E. Afr.Agric. for.J. 54: 173-183.
Moradi, F. 2013. Long-Term Effects of Mechanized Cultivation on Some Soil Physical Properties
in Some Khozestan Sugarcane Agro-Industries. Journal of Water and Soil
Vol. 27, No. 6, Jan.-Feb. 2014, p. 1153-1165. [in Persian]
More, S.D. 1994. Effect of farmwastes and organic manures on soil properties, nutrient availability and yield of rice-wheat grown on sodic Vertisol. J. Indian. Soc. Soil Science. 42: 253-256.
Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. In Methods of soil analysis, part 2, 2nd ed., ed. A. L. Page, R. H. Miller, and D. R. Keeney, 539–580.
Peixoto, R.S., Coutinho, H.L.C., Madari, B., Machado, P.L., Rumjanek, N.G., Van Elsas, J.D., Seldin, L., and Rosado, A.S. 2006. Soil aggregation and bacterial community structure as affected by tillage and cover cropping in the Brazilian Cerrados. Soil Till. Res. 90: 16-28.
Pronk GJ, Heister K, Ding GC, Smalla K, and Kögel-Knabner I, 2012. Development of biogeochemical interfaces in an artificial soil incubation experiment; aggregation and formation of organo-mineral associations.Geoderma 189: 585-594.
Rahmati, m, 2008. Crop Rotation Effects on Soil Physico-chemical Properties and Rain Fed Wheat Crop Yield. CAB-Int 2009; 20(1): 73-86. [in Persian]
Rahiminaini, m, 2004. Compaction, Moisture and Farmyard Manure Effects on Carbon Sources and Structural Characteristics of Different Soils under Corn. Pajouhesh & Sazandegi No:63 pp: 21-29. [in Persian]
Rbbins, C.W., 1986. Sodic calcareous soil reclamation as affected by different amendments and crops. Agron. J. 78: 916-920.
Rodríguez, A.R., Arbelo, C.D., Guerra, J.A., Mora, J.L., Notario, J.S. and Armas, C.M. 2006. Organic carbon stocks and soil erodibility in Canary Islands Andosols. Catena, 66: 228-235.
Roosta, mj. 2001. Investigating the effect of organic materials and calcium-containing mineral compounds on the size distribution of soil grains and the amount of dispersible clay in a sodium soil. https://sid.ir/paper/357772/fa. [in Persian]
Safadoust, A.2013. Effect of Crop Management and Texture on Some Soil Structural Properties. 10.22092-ijsr.2013.126260.ris
Shorafa, M.1987. The effect of perlite and hydroplus on porosity, moisture holding capacity and water permeability of soils. [in Persian]
Singh, M.V. and Singh, K.N. 1989. Reclamation techniques for improvement of sodic soils and crop yield. Indian Journal of Agricultural Science. 59: 495-500.
Sparks, D. L., A. L. Page, P. A. Helmke, R. H. Leoppert, P. N. Soltanpour, M. A. Tabatabai, G. T. Johnston, and M. E. Ummer. 1996. Methods of soil analysis. Madison, Wisc.: Soil Science Society of America.
Tajik, F. Evaluation of Soil Aggregate Stability in Some Regions of Iran. jwss 2004; 8 (1) :107-123. [in Persian]
Tisdall, J.M., and J.M. Oades. 1982. Organic matter and water-stable aggregates in soil. J. Soil Sci. 33: 141-163.
Tisdall, J.M. and Oades, M. 1980. The management of ryegrass to stabilize aggregates of a red-brown earth. Aust. J. Soil. Res. 18: 415-422.
Yazdanpanah, N., Pazira, E., Neshat, A., Mahmoodabadi, M., and Rodríguez Sinobas, L. 2013. Reclamation of calcareous saline sodic soil with different amendments (II): Impact on nitrogen, phosphorous and potassium redistribution and on microbial respiration. Agricultural Water Management. 120: 39-45.
Yousofi, M., Shariatmadari, J. and Hajabbasi, M.A. 2007. Measurement of some available organic carbon stocks as soil quality index. J. Sci. Tech. of Agri., Natural Resour., 11(42): 429-439.
Zichun G, Jiabao Z, Jun F, Xueyun Y, Yanli Y, Xiaori H, Daozhong W, Ping Z, Xinhua P.2019. Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments