پیش نمایی تغییرات کمی منابع آب زیرزمینی دشت اردبیل تحت تاثیر تنش های اقلیمی مبتنی بر بارش و رواناب
الموضوعات :کوروش آزاد جلودارلو 1 , امین صادقی 2
1 - گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
2 - گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
الکلمات المفتاحية: تغییر اقلیم, دشت اردبیل, پیش نمایی, منابع آب,
ملخص المقالة :
در این پژوهش تغییرات کمی منابع آب زیرزمینی دشت اردبیل با استفاده از برونداد اقلیمی HadGEM2-ES و ابزارهای هوش مصنوعی Eureqa برای سه دوره آتی (1418-1400، 1438-1420 و 1440-1458) تحت سه سناریوی اقلیمی (RCP2.6، RCP4.5 و RCP8.5) پیش نمایی شد. نتایج نشان داد بیشترین کاهش دبی در فصل تابستان به میزان 27% خواهد بود، این در حالی است که افزایش رواناب سطحی در فصل زمستان تا 12% نیز پیش بینی میشود. علت این امر ادامه روند گرمایش جهانی است که منجر به ذوب سریع تر برف های زمستانی خواهد شد. نتایج مدل ها حاکی از کاهش تراز آب زیرزمینی در تمام ماه های سال در دوره های آتی است که این کاهش در همه دوره- سناریوها معنی دار بوده است. به طور متوسط تراز آب زیرزمینی بین 1/2 تا 3/2 متر کاهش خواهد یافت. کاهش بارش و دبی در فصل تابستان - که مصادف با دوره رشد گیاه است - افزایش برداشت از منابع زیرزمنی را نیز شدت خواهد بخشید. این امر منجر به تشدید بحران آب در منطقه خواهد شد.
جعفرزاده، ا.، خاشعی سیوکی، ع. و شهیدی، ع. 1395. ارزیابی دو روش ریزمقیاسنمایی آماری LARS-WG و SDSM در برآورد تغییرات مولفههای اقلیمی (مطالعه موردی دشت بیرجند). نشریه پژوهش های حفاظت آب و خاک، 23(4)، 322-309.
رضایی، ع. 1392. آمار و احتمالات (کاربرد در کشاورزی). انتشارات جهاد دانشگاهی.
صادقی، ا. و دین پژوه، ی. 1398. پیشنمایی بارش و روند تغییرات آن تحت شرایط تغییر اقلیم در دورههای آتی (مطالعه موردی: تبریز). محیطزیست و مهندسی آب، 5(4)، 250-239.
یزدانپناه، ح. و علیزاده، ت. 1390. برآورد احتمال وقوع اموج گرمایی با دوره های تداوم مختلف در استان کرمان به کمک زنجیره مارکف. فصلنامه تحقیقات جغرافیایی، 102، 72-52.
Acharjee, T.K., Ludwig, F., van Halsema, G., Hellegers, P. and Supit, I. 2017. Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh. Agricultural Water Management, 194, pp.172-183.
Al-Safi, H.I.J. and Sarukkalige, P.R., 2020. The application of conceptual modelling to assess the impacts of future climate change on the hydrological response of the Harvey River catchment. Journal of Hydro-environment Research, 28, pp.22-33.
Asakereh, H. and Akbarzadeh, Y. 2017. Simulation of temperature and precipitation changes of Tabriz synoptic station using statistical Downscaling and Canesm2 climate change model output. Geography and Environmental Hazards, 23, 153-174.
Azmi, M., Rüdiger, C. and Walker, J.P., 2016. A data fusion‐based drought index. Water Resources Research, 52(3), pp.2222-2239.
Bakhtiari, P.H., Nikoo, M.R., Izady, A. and Talebbeydokhti, N., 2020. A coupled agent-based risk-based optimization model for integrated urban water management. Sustainable Cities and Society, 53, p.101922.
Boughariou, E., Allouche, N., Jmal, I., Mokadem, N., Ayed, B., Hajji, S., Khanfir, H. and Bouri, S. 2018. Modeling aquifer behaviour under climate change and high consumption: Case study of the Sfax region, southeast Tunisia. Journal of African Earth Sciences, 141, pp.118-129.
Charlton, M.B. and Arnell, N.W. 2014. Assessing the impacts of climate change on river flows in England using the UKCP09 climate change projections. Journal of Hydrology, 519, pp.1723-1738.
Coleman, K., Whitmore, A.P., Hassall, K.L., Shield, I., Semenov, M.A., Dobermann, A., Bourhis, Y., Eskandary, A. and Milne, A.E., 2021. The potential for soybean to diversify the production of plant-based protein in the UK. Science of the Total Environment, 767, p.144903.
Demirhan, H. and Atilgan, Y.K., 2015. New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique. Energy Conversion and Management, 106, pp.1013-1023.
Fan, J., Wu, L., Zhang, F., Cai, H., Zeng, W., Wang, X. and Zou, H., 2019. Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China. Renewable and Sustainable Energy Reviews, 100: 186-212.
Gharun, M., Turnbull, T.L., Henry, J. and Adams, M.A., 2015. Mapping spatial and temporal variation in tree water use with an elevation model and gridded temperature data. Agricultural and Forest Meteorology, 200, pp.249-257.
Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H. and Aureli, A. 2011. Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3), pp.532-560.
Hashmi, M.Z., Shamseldin, A.Y. and Melville, B.W., 2011. Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stochastic Environmental Research and Risk Assessment, 25(4), pp.475-484.
IPCC (2013). Climate Change: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
Kahsay, K.D., Pingale, S.M. and Hatiye, S.D. 2018. Impact of climate change on groundwater recharge and base flow in the sub-catchment of Tekeze basin, Ethiopia. Groundwater for Sustainable Development, 6, pp.121-133.
Kopytkovskiy, M., Geza, M. and McCray, J.E. 2015. Climate-change impacts on water resources and hydropower potential in the Upper Colorado River Basin. Journal of Hydrology: Regional Studies, 3, pp.473-493.
Ku, H.H., Ryu, J.H., Bae, H.S., Jeong, C. and Lee, S.E., 2019. Modeling a long-term effect of rice straw incorporation on SOC content and grain yield in rice field. Archives of Agronomy and Soil Science, 1-14.
Lopes, P.M.D.A.G.G., 2008. Assessment of climate change statistical downscaling methods: Application and comparison of two statistical methods to a single site in Lisbon (Doctoral dissertation, FCT-UNL).
Mehan, S., Guo, T., Gitau, M.W. and Flanagan, D.C., 2017. Comparative study of different stochastic weather generators for long-term climate data simulation. Climate, 5(2), p.26.
Nerantzaki, S.D., Hristopulos, D.T. and Nikolaidis, N.P., 2020. Estimation of the uncertainty of hydrologic predictions in a karstic Mediterranean watershed. Science of The Total Environment, 717, p.137131.
Schmidt, M. and Lipson, H., 2009. Distilling free-form natural laws from experimental data. science, 324(5923), pp.81-85.
Sfyrakis, C. 2010. Runoff prediction from a hydrological spatio-temporal database. M.Sc. Thesis, Artificial Intelligence, School of Informatics, University of Edinburgh, (1-90).
Stevens, T. and Madani, K., 2016. Future climate impacts on maize farming and food security in Malawi. Scientific reports, 6(1), pp.1-14.
Taniguchi, K. 2016. Future changes in precipitation and water resources for Kanto Region in Japan after application of pseudo global warming method and dynamical downscaling. Journal of Hydrology: Regional Studies, 8, pp.287-303.
Xu, J., Wang, J., Wei, Q. and Wang, Y., 2016. Symbolic regression equations for calculating daily reference evapotranspiration with the same input to Hargreaves-Samani in arid China. Water resources management, 30(6), pp.2055-2073.
Zabihi, H., Vogeler, I., Amin, Z.M. and Gourabi, B.R., 2016. Mapping the sensitivity of citrus crops to freeze stress using a geographical information system in Ramsar, Iran. Weather and climate extremes, 14: 17-23.
Zarghami, M., Abdi, A., Babaeian, I., Hassanzadeh, Y. and Kanani, R., 2011. Impacts of climate change on runoffs in East Azerbaijan, Iran. Global and Planetary Change, 78(3-4), pp.137-146.
_||_