مروري بر خدمات هواشناسي، چالشها و راهکارها در بخش کشاورزي جهت کاهش آسيبپذيري در شرايط تغيير اقليم
الموضوعات :سعیده کمالی 1 , ابراهیم اسعدی اسکوئی 2 , مرتضی پاکدامن 3
1 - دانشجوي دکترا هواشناسي کشاورزي، گروه مهندسي آبياري و آباداني، دانشگاه تهران، کرج، ايران.
2 - استاديار، پژوهشگاه هواشناسي و علوم جو کشور، پژوهشکده اقليم شناسي، مشهد، ايران.
3 - استاديار، پژوهشگاه هواشناسي و علوم جو کشور، پژوهشکده اقليم شناسي، مشهد، ايران.
الکلمات المفتاحية: تغییر اقلیم, کشاورزی, خدمات هواشناسی کشاورزی, کشاورزی دیجیتال,
ملخص المقالة :
زمينه و هدف: بهمنظور انطباق سيستمهاي کشاورزي با افزايش تنوع اقليمي نياز است که اطلاعات هواشناسي با توصيههاي مديريتي قبل از شروع فصل زراعي ترکيب شوند. راهکارهايي براي کاهش آسيبپذيري کشاورزي در برابر افزايش تغييرات آب و هوايي از طريق مشاورههاي هواشناسي کشاورزي مبتني بر پيشبيني آب و هوايي وجود دارد. بنابراين، هدف از اين مطالعه مروري بر خدمات ارائهشده توسط هواشناسي کشاورزي جهت کاهش آسيبپذيري کشاورزي در شرايط تغيير اقليم است. به همين منظور سعي ميشود تا تجارب موفق کشورهاي مختلف، اعم از کشورهاي توسعهيافته و برخوردار از فناوريهاي پيشرفته تا کشورهاي کمتر توسعهيافته و برخوردار از دانش بومي ـ محلي، در سازگاري با تغييرات اقليمي که شامل انواع خدمات هواشناسي کشاورزي، موانع و شکافهاي عمده در ارائه خدمات اقليمي، راهکارهاي ارائه بهتر خدمات اقليمي به کشاورزان، سرويسهاي اقليمي مورداستفاده در هواشناسي کشاورزي و همچنين رويکردهايي براي تسريع پذيرش فناوريها و خدمات مشاورهاي هواشناسي کشاورزي توسط کشاورز را ارائه نمايد.
يافتهها و نتايج: در راستاي تابآوري در برابر آثار منفي رخدادها و بلاياي طبيعي نياز است با توجه به ويژگيهاي جغرافيايي و اجتماعي و فرهنگي هر منطقه برنامهها و سياستهاي تابآوري با مشارکت مدني، توسعهي دانش بومي و بهکارگيري فناوري در راستاي دانش بومي و زيرساختهاي منطقهاي همراه باشد. همچنين تصميمگيريهاي دولتها و سياستگذاران، در راستاي وضع قوانين و مقررات و سياستهاي تابآوري، ميتواند توانايي بازيگران ديگر را براي سازگاري با تأثيرات تغييرات اقليمي تقويت يا محدود کند. در همين راستا نتايج بررسي منابع ليستي از موانع و شکافهاي موجود شامل فقدان پيشبينيهاي اقليمي واقعي، فقدان اطلاعات در مورد رشد و نمو محصول، مشارکت کم توليدکنندگان محصولات کشاورزي در توليد و استفاده از خدمات، دسترسي ناعادلانه به کانالهاي ارتباطي، تطبيق ناکافي خدمات هواشناسي کشاورزي با نيازهاي کشاورزان را نشان داد. نتايج بيانگر لزوم حرکت به سمت تحول کشاورزي ديجيتال، آموزش هدفمند هواشناسي کشاورزي، تقويت نقش فناوري اطلاعات و ارتباطات در ارائه اطلاعات دقيق، افزايش سرمايهگذاري در نصب ايستگاههاي هواشناسي خودکار و رادار و برگزاري سمينارها و کارگاههاي آموزشي جهت غلبه بر موانع و افزايش کيفيت خدمات اقليمي ارائهشده در بخش کشاورزي است.
Abdul Manafi, N. Al-S., Mazaheri, M. (2019). Agricultural meteorology and upcoming opportunities (2). Islamic Parliament Research Center of the Islamic Republic of IRAN. [in Persian]
Alexander, S. (2019). What climate-smart agriculture means to members of the Global Alliance for climate-smart agriculture. Future Food J. Food Agric. Soc. 2019, 7, 21–30.
Arslan, A., McCarthy, N., Lipper, L., Asfaw, S., Cattaneo, A., Kokwe, M. (2015). Climate smart agriculture? Assessing the adaptation implications in Zambia. J. Agric. Econ. 66, 753–780.
Bacci, M., Idrissa, O. A., Zini, C., Burrone, S., Sitta, A. A., and Tarchiani, V. (2023). Effectiveness of agrometeorological services for smallholder farmers: the case study in the regions of Dosso and Tillabéri in Niger, Clim. Serv., 30, 100360, https://doi.org/10.1016/j.cliser.2023.100360.
Balaghi, R., Jlibene, M., Tychon, B. & Eerens, H. (2013). Agrometeorological cereal yield forecasting in Morocco. Institut National de la Recherche Agronomique du Maroc (INRA).
Callaghan, M., Schleussner, C. F., Nath, S., Lejeune, Q., Knutson, T. R., Reichstein, M., ... & Minx, J. C. (2021). Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. Nature climate change, 11(11), 966-972.
CILSS (Permanent Interstate Committee for Drought Control in the Sahel). (2020). AGHRYMET regional center. In: CILSS Publications: Bulletins. https://agrhymet.cilss.int/index. php/bulletins/
Ciruela-Lorenzo, A. M., Del-Aguila-Obra, A. R., Padilla-Meléndez, A., & Plaza-Angulo, J. J. (2020). Digitalization of agri-cooperatives in the smart agriculture context. proposal of a digital diagnosis tool. Sustainability, 12(4), 1325.
Edalat Moghadam, M. (2022). Building Climate-Resilient Communities; Say No to Migration. Science and Technology Policy Letters, 12(4), 98-80. [in Persian]
Ehsani, M., & Shokoohi, Z. (2022). Estimation of Iran's agricultural resilience index to climate change. Strategic Research Journal of Agricultural Sciences and Natural Resources, 7(1), 63-78. doi: 10.22047/srjasnr.2022.147432. [in Persian]
Escamilla-García, A., Soto-Zarazúa, G. M., Toledano-Ayala, M., Rivas-Araiza, E., & Gastélum-Barrios, A. (2020). Applications of artificial neural networks in greenhouse technology and overview for smart agriculture development. Applied Sciences, 10(11), 3835.
European Environment Agency. (2023). Climate Change Adaptation in the Agriculture Sector in Europe, EEA Report No. 04/2019, EEA, https://www.eea.europa.eu/publications/cc-adaptation-agriculture .
FAO. (2021). Global outlook on climate services in agriculture – Investment opportunities to reach the last mile, FAO, Rome, https://doi.org/10.4060/cb6941en.
FAO. The State of Food and Agriculture. (2020). Overcoming Water Challenges in Agriculture; Food and Agriculture Organisation of the United Nations: Rome, Italy.
Food and Agriculture Organization of the United Nations. (2021). Global outlook on climate services in agriculture: Investment opportunities to reach the last mile. Food & Agriculture Org, 153.
Hamed, S., Ibba, P., Petrelli, M., Ciocca, M., Lugli, P., & Petti, L. (2021, November). Transistor-based plant sensors for agriculture 4.0 measurements. In 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) (pp. 69-74). IEEE.
Harris, D.; Orr, A. (2014). Is rainfed agriculture really a pathway from poverty? Agric. Syst. 123, 84–96.
Hasan, M.K., Desiere, S., D’Haese, M., Kumar, L. (2018). Impact of climate-smart agriculture adoption on the food security of coastal farmers in Bangladesh. Food Secur. 10, 1073–1088.
https://library.wmo.int/index.php?lvl=notice_display&id=16002. https://library.wmo.int/index.php?lvl=notice_display&id=12113.
ICPAC. (2021). ICPAC [online]. [Cited 25 January 2021]. https://www.icpac.net/
Iran Meteorological Organization, www.irimo.ir. [in Persian]
Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks, 3, 150-164.
Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in space research, 15(11), 91-100.
Lajoie-O'Malley, A., Bronson, K., van der Burg, S., & Klerkx, L. (2020). The future (s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosystem Services, 45, 101183.
Lowder, S. K., Skoet, J., and Raney, T. (2016). The number, size, and distribution of farms, smallholder farms, and family farms worldwide, World Dev., 87, 16–29, https://doi.org/10.1016/j.worlddev.2015.10.041.
Manlio, B., Paolo, B., Alberto, G., & Massimiliano, R. (2021). Unmanned Aerial Vehicles for Agriculture: An Overview of IoT‐Based Scenarios. Autonomous Airborne Wireless Networks, 217-235.
McKune, S., Poulsen, L., Russo, S., Devereux, T., Faas, S., McOmber, C., Ryley, T. (2018). Reaching the end goal: Do interventions to improve climate information services lead to greater food security? Clim. Risk Manag. 22, 22–41.
Ministry of the Environment and Spatial Planning. (2016). Workshop Agrometeorologists for farmers in hotter, drier, wetter future, 9–10 November 2016, Ljubljana, http://www.dmcsee.org/en/news/122 (last access: 25 January 2023.
Narinbaeva, G., Menglikulov, B., Siddikov, Z., Bustonov, K., & Davlatov, S. (2021). Application of innovative technologies in agriculture of Uzbekistan. In E3S Web of Conferences (Vol. 284). EDP Sciences.
NCAER. (2010). Impact Assessment and Economic Benefits of Weather and Marine Services. National Council of Applied Economic Research, New Delhi.
NCAER. (2015). Economic Benefits of Dynamic Weather and Ocean Information and Advisory Services in India and Cost and Pricing of Customized Products and Services of ESSONCMRWF & ESSO-INCOIS. National Council of Applied Economic Research, New Delhi.
NEPAD Secretariat. (2009). Financial resources and investment for climate change. In: The Africa Partnership Forum Paper on Climate Change. Addis Ababa, Ethiopia.
Pakdaman, M., Babaeian, I., Javanshiri, Z., & Falamarzi, Y. (2022). European multi model ensemble (EMME): A new approach for monthly forecast of precipitation. Water Resources Management, 36(2), 611-623.
Pakdaman, M., Babaeian., I., Bouwer, LM. (2022). Improved Monthly and Seasonal Multi-Model Ensemble Precipitation Forecasts in Southwest Asia Using Machine Learning Algorithms. Water. 14(17):2632
Patil, K. A., & Kale, N. R. (2016, December). A model for smart agriculture using IoT. In 2016 international conference on global trends in signal processing, information computing and communication (ICGTSPICC) (pp. 543-545). IEEE.
Pilarova, T., Bavorova, M., Kandakov, A. (2018). Do farmer, household and farm characteristics influence the adoption of sustainable practices? The evidence from the Republic of Moldova. Int. J. Agric. Sustain. 16, 367–384.
Pinto, D. M., Oliveira, P. D., Fachini Minitti, A., Mansur Mendes, A., Freitas Vilela, G., Castro, G. S. A., ... & Stachetti Rodrigues, G. (2021). Impact assessment of information and communication technologies in agriculture: application of the ambitec-TICs method. Journal of technology management & innovation, 16(2), 91-101.
Ponnusamy, K. (2018). Proofing farmers against climate and weather extremities. ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
Rathore, L.S. and Parvinder Maini. (2008). Economic Impact Assessment of Agro-Meteorological Advisory Service of NCMRWF. Report no, Ministry of Earth Sciences, Government of India, NOIDA, UP, INDIA.
Roy, S. K., & De, D. (2022). Genetic algorithm based internet of precision agricultural things (IopaT) for agriculture 4.0. Internet of Things, 18, 100201.
S.C. Bhan. (2018). Economic Benefits of Existing Agrometeorological Advisory System of IMD to the Farmers of India. India Meteorological Department, New Delhi -110 003.
SEBBARI, R., Morocco, DMN. (2016). WMO RA VI Workshop on RCC Implementation and
the second Coordination meeting of RAVI RCC Network Belgrade, Serbia, 11 – 14 October.
Singh, G., Sharma, Y.R., Shanmugasundaram, S., Shih, S.L. and Green, S.K. (2004). Status of mungbean yellow mosaic virus resistance breeding. In Proc: “Final Workshop and Planning Meeting on Mungbean”. Punjab Agricultural University. pp. 204-213.
Singh, S.V. (2018). National Use of Weather Forecast for Livestock Management in Agrometeorological Services. Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India, 64 pp.
Smit, B., & Pilifosova, O. (2003). Adaptation to climate change in the context of sustainable development and equity. Sustainable Development, 8(9), 9.
Tarchiani, V., Camacho, J., Coulibaly, H., Rossi, F., & Stefanski, R. (2018). Agrometeorological services for smallholder farmers in West Africa. Advances in Science and Research, 15, 15-20.
Tarchiani, V., Coulibaly, H., Baki, G., Sia, C., Burrone, S., Nikiema, P. M., Migraine, J. B., and Camacho, J. (2021) Access, uptake, use and impacts of agrometeorological services in Sahelian rural areas: the case of Burkina Faso, Agronomy, 11, 2431, https://doi.org/10.3390/agronomy11122431.
Tarchiani, V., Rapisardi, E., Parrish, P., Di Giuseppe, E., Bacci, M., Baldi, M., and Pasqui, M. (2020). Competencies based innovative learning solutions for co-development of climate services in West Africa, Adv. Sci. Res., 17, 47–52, https://doi.org/10.5194/asr-17-47-2020.
Teagasc. (2023). Signpost Programme, https://www.teagasc.ie/environment/climate-change--air-quality/signpost-programme/ (last access: 25 January 2023).
Totin, E., Segnon, A.C., Schut, M., Affognon, H., Zougmoré, R.B., Rosenstock, T., Thornton, P.K. (2018). Institutional Perspectives of Climate-Smart Agriculture: A Systematic Literature Review. Sustainability, 10, 1990.
Vincent, K., Daly, M., Scannell, C., and Leathes, B. (2018). What can climate services learn from theory and practice of co-production? Clim. Serv., 12, 48–58, https://doi.org/10.1016/j.cliser.2018.11.001.
WHO. (2023). Climate change and health, https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health (last access: 25 January 2023).
WMO. (1972). Technical Note No. 123, Geneva.
WMO. (2020). 2020 State of Climate Services, WMO No. 1252, WHO, Geneva, https://library.wmo.int/index.php?lvl=notice_display&id=21777#.X4VUG5MzZR4 (last access: 27 January 2023), 2020.
World Bank, 2008. Weather and Climate Services in Europe and Central Asia, A Regional Review. The World Bank.