رابطه بُعدهای فرکتالی آبراهه با خصوصیات مورفومتری حوضه
الموضوعات :سپیده مفیدی 1 , ابوالفضل معینی 2 , علی محمدی ترکاشوند 3 , ابراهیم پذیرا 4 , حسن احمدی 5
1 - دانشجوی دکتری فیزیک و حفاظت خاک، گروه خاکشناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
2 - استادیار، گروه جنگل، مرتع و آبخیزداری، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
3 - دانشیار گروه خاکشناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
4 - استاد گروه خاکشناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
5 - استاد گروه جنگل، مرتع و آبخیزداری، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
الکلمات المفتاحية: شبکه زهکشی, هندسه فرکتالی, استراهلر, ضریب شکل, نسبت انشعاب,
ملخص المقالة :
زمینه و هدف: رفتار رودخانه، از دو دسته عوامل طبیعی و عوامل انسانی تأثیر میپذیرد. عوامل طبیعی مانند وقوع سیل، فرسایش خاک، حرکت تودهای و عوامل انسانی مانند ساختوساز تأسیسات، تغییر کاربری اراضی و برداشت شن و ماسه از بستر، نقش اساسی در رفتار و تشدید تغییرات رودخانه دارد. خطرات جدی و جبرانناپذیری که جابهجاییها و تغییرات رودخانهها ممکن است به دنبال داشته باشد، ضرورت بررسی مورفولوژی آن را در مرحله مطالعات، قبل از هر گونه اقدامی نمایان میسازد. شبکه آبراههها پیوسته مکان خود را براساس زمان، عوامل محیطی و دخالت بشر تغییر میدهند. مطالعه تغییرات آبراههها بهمنظور ارائه راهکارهای مدیریتی برای حفاظت خاک از اهمیت بسزائی برخوردار است. یکی از روشهای نوین در این رابطه، استفاده از هندسه فرکتال میباشد. هدف از این پژوهش، محاسبه بُعدهای فرکتالی آبراهه و بررسی رابطه آن با خصوصیات مورفومتری حوضه بود.روش پژوهش:بدین منظور نقشه توپوگرافی حوضه مزداران شهرستان فیروزکوه استان تهران تهیه و با استفاده از نرمافزار ARC GIS 10.3 نقشه آبراههها تهیه و خصوصیات مورفومتری حوضه تعیین گردید. سپس سه بُعد فرکتالی شبکه زهکشی (انشعاب آبراهه)، تراکم زهکشی و مساحت حوضه محاسبه شد. در نهایت با وارد کردن داده های بهدست آمده از محاسبات در نرمافزارهای SPSS 18 و Curve Expert روابط خصوصیات مورفومتری حوضه با ابعاد فرکتالی بررسی گردید.یافتهها: نتایج نشان داد کم ترین و بیشترین بُعد فرکتالی نسبت انشعاب 25/0 و 99/2، بُعد فرکتالی تراکم زهکشی 19/0 و 34/2 و بُعد فرکتالی مساحت 76/0 و 60/2 میباشد. میزان بُعد فرکتالی نسبت انشعاب، بُعد فرکتالی تراکم زهکشی و بُعد فرکتالی مساحت کل حوضه به ترتیب برابر 84/1، 71/0 و 46/1 به دست آمد. رابطه بین بُعد فرکتالی نسبت انشعاب با مساحت زیرحوضهها با ضریب تببین 90/0، معکوس و رابطه بین بُعد فرکتالی تراکم زهکشی با مساحت و بُعد فرکتالی مساحت با مساحت زیرحوضهها به ترتیب با ضریب تببین 88/0 و 87/0، مستقیم میباشد. هرچه حوضه کشیدهتر و ضریب شکل، گردی و کشیدگی کوچک تری داشته باشد، بُعد انشعاب کوچک تری خواهد داشت. بُعد فرکتالی مساحت با ضریب فشردگی، ضریب کشیدگی، ضریب شکل، نسبت انشعاب، عرض مستطیل معادل و طول مستطیل معادل رابطه مستقیم و با سایر متغیرها رابطه معکوس دارد. براین اساس هرچه حوضه کشیدهتر باشد و ضریب شکل و کشیدگی کوچکتری داشته باشد، بُعد مساحت کوچکتری خواهد داشت. بُعد فرکتالی تراکم زهکشی با ضریب گردی، ضریب فشردگی، ضریب کشیدگی، ضریب شکل، نسبت مساحت، نسبت انشعاب، عرض مستطیل معادل و طول مستطیل معادل رابطه مستقیم و با سایر متغیرها رابطه معکوس دارد. بنابراین با گردتر شدن حوضه، بُعد فرکتالی تراکم زهکشی افزایش مییابد.نتایج: باتوجه به ضریب تبیین مدلهای بهدست آمده برای رابطه ابعاد فرکتالی و خصوصیات مورفومتری، میتوان ابعاد فرکتالی مورد بررسی را با استفاده از خصوصیات مورفومتری به راحتی محاسبه و به تحلیل آنها پرداخت . با توجه به اهمیت خصوصیات آبراهه در مدیریت حوزههای آبخیز از نظر سیل، فرسایش و حفاظت خاک، میتوان از مدلهای فرکتالی جهت تصمیمگیری سریع و دقیقتر برای مدیریت آبراههها استفاده کرد. در آخر با توجه به اینکه استفاده از هندسه فرکتالی روشی نوین در بررسی خصوصیات شبکه آبراههها میباشد پیشنهاد میشود در مناطق مختلف با شرایط مورفومتری متفاوتتر، حوضهها مورد تحلیل فرکتالی قرار گیرند
Agaard, K. and G. Hartvigsen. 2014. Assessing spatial patterns of plant communities at varying stages of succession. Applied Mathematics. 5: 1842-1851.
Agus Nur, A., Syafri, I., Muslim, D., Hiranawan, F., Raditya, P.P., Sulastri, M. and Abdulah, F. 2016. Earth and Environmental Science. International Symposium on Geophysical Issues.
Ahmadi, A., Neyshabouri, M.R., Rouhipour, H., and Asadi, H. 2011. Fractal dimension of soil aggregates as an index of soil erodibility. Journal of Hydrology 400 (3-4): 305-311.
Alimoradi, M., Ekhtesasi, M.R., Tazeh, M. and Karimi, H. 2018. Calculation of Fractal Dimension of the Geological Formations and Their Relationship to the Formation Sensibility. Physical Georaphy Research Quartrly. 50 (2): 241-253. [in Persian]
Andronache I., Peptenatu D., Ciobotaru A.M., Gruia A.K., Gropoșila N.M. 2016. Using Fractal Analysis in Modeling Trends in the National Economy, Procedia Environmental Sciences 32: 344-351.
Andronache, I., Ahammer, H., Jelinek, H.F., Peptenatu, D., Ciobotaru, A.M., Drăghici, C.C., Pintilii, R.D., Simio,n A.G., Teodorescu, C. 2016. Fractal analysis for studying the evolution of forests. Chaos, Solitons & Fractals. 91: 310–318.
Asadzadeh, F., Jalalzadeh, S. and Samadi A. 2017. Comparison of the physical and chemical properties of the bed and suspended sediments of the Roze-Chay river. Journal of Water and Soil Conservation. 24(2): 273-288. [in Persian]
Bartolo, S.G., Veltri, M. and Primavera L., 2006, Estimated generalized dimensions of river networks. Journal of Hydrology. 322, 181–191.
Bi, L., He, H., Wei, Z., Shi, F., 2012, Fractal properties of landform in the Ordos Block and surrounding areas, China. Geomorphology. 175, 151–162.
Chorley R.J., Kennedy B.A. 1971. Physical geography: a systems approach. Prentice-Hall International, 370, London.
Cui. Y., Li, J., Chen, A., Wu, J., Luo, Q., Rafay, L., He, J., Liu, Y., Wang, D., Lin, Y. and Wu, Ch. 2019. Fractal dimensions of trapped sediment particle size distribution can reveal sediment retention ability of common plants in a dry-hot valley. Catena. 180: 252-262.
Diaconu, D., Drăghici, CC., Pintilii, R.D., Peptenatu, D., Grecu, A. 2016. Management of the Protection Forest Areas in Region Affected by Aridity in Oltenia Southwestern Development Region (Romania), 16th International Multidisciplinary Scientific GeoConference-SGEM, Vienna, Austria, 477-483.
Ding, W.F., Huang, C.H., 2017. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution. Geomorphology 295, 801–810. https://doi.org/10.1016/j.geomorph.2017.08.033.
Enquist, B. J., G. B. West, E. L. Charnov and J. H. Brown. 1999. Allometric scaling of production and life-history variation in vascular plants. Nature. 401(6756): 907-911.
Fattahi, M.H. and Talebzadeh Z. 2017. The Relationship Between Watershed Compactness Coefficient and the Fractal Characteristics. Iran-Water Resources Research. 13 (1): 191-203. [in Persian]
Frontier, S. 1990. Applications of Fractal Theory to Ecology, In P. Legendre and C. Legendre (Eds.), Developments in Numerical Ecology: NATO ASI Series, Springer, Berlin.
Gavrila I.G., Man T., Surdeanu V. 2011. Geomorphological heritage assessment using GIS analysis for geotourism development in Măcin Mountains, Dobrogea, Romania, GeoJournal of Tourism and Geosites, 2 (8): 198-205.
Ghahroudi Tali M, and Derafshi K. 2015. The study of chaos in the flood risk pattern of Tehran. Journal of Spatial Analysis Environmental Hazards. 2 (2):1-16
Hekmatzadeh, A.A., Torabi Haghighi, Hosseini, K. and Klove, B. 2018. Fractal analysis of river flow time series: a case study on Shapur river. Geophysical Research Abstracts. 20.
Horton, R.E. 1932. Drainage Watershed characteristics. Am Geophys Union Trans. 13: 348-352.
Khan S. Ganguly A.R. and Saigal S. 2005. Detection and Predictive Modeling of Chaos In Finite Hydrologycal Time Series, Nonlinear Processes in Geophysics. 12: 41-53.
Khanbabaei, Z., Karam, A. and Rostamizad, G. 2013. Studying Relationships between the Fractal Dimension of the Drainage Basins and Some of Their Geomorphological Characteristics. International Journal of Geosciences. 4: 636-642.
Kršák B., Blistan P., Pauliková A., Puškárovác P., Kovanič L., Palková J., Zelizňaková V. 2016. Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Measurement, 91, 276–287.
Kusak, M., 2014, Methods of fractal geometry used in the study of complex geomorphic netwoks, AUC. Geographica. 49 (2): 99–110.
Kutlu T, Ersahin S and Yetgin B, 2008. Relations between solid fractal dimension and some physical properties of soils formed over alluvial and colluvial deposits. Journal of Food, Agriculture and Environment. 6: 445-449.
Lisi B., Honglin., H, Zhanyu, W. and Feng, S. 2012. Fractal Properties of Landforms in the Ordos Block and Surrounding Areas, China. Geomorphology. PP. 151-162.
Long, C. Y., Y. Zhao and H. Jafari. 2014. Mathematical models arising in the fractal forest Gap via local fractional calculus. Hindawi Publishing Corporation. Abstract and Applied Analysis. 6 pages.
Lyu, X., Yu, J., Zhou, M., Ma, B., Wang, C., Han, G., Guan, B., Wu, H., Li, Y., Wang, D., 2015. Changes of soil Patricle Size Distribution in Tidal Flats in the Yellow River Delta. J. Plos One. 10(3), e0121368.
Mandelbrot, B.B. 1982. The fractal geometry of nature. W.H. Freeman and Company. New York. 468 p.
Miller, V.C. 1953. A quantitative geomorphologic study of drainage watershed characteristics in the Clinch Mountain area. Virginia and Tennessee, Project Nr 389042, Tech Report 3. Columbia University Department of Geology, ONR Geography Branch, New York.
Mofidi, S., Eskandari, M., Pazira, E., Homaee, M., 2018. Using fractal models for quantifying soil structure and comparison with classical methods. water soil Resour. Conserv. 7, 89–101
Mohammadi, M., Shabanpour, M., Mohammadi, M.H. and Davatgar, N. 2019. Characterizing Spatial Variability of Soil Textural Fractions and Fractal Parameters Derived from Particle Size Distributions. Pedosphere. 29 (2): 224-234.
Morisawa, M.E. 1962. Quantitative Geomorphology of Some Watersheds in the Appalachian Plateau. Geological Society of America Bulletin, 73, 1025-1046.
Peterson, G. 2000. Scaling ecological dynamics: self-organization, hierarchical structure, and ecological resilience. Climatic Change. 44(3): 291-309.
Petrisor, A.I., Andronache, I., Petrișor, L.E., Ciobotaru, A.M., Peptenatu, D. 2016. Assessing the fragmentation of the green infrastructure in Romanian cities using fractal models and numerical taxonomy, Edited by: Ioja, I.C.; Comanescu, L.; Dumitrache, L.; Nedelea, A.; Nita, M.R., Ecosmart - Environment at Crossroads: Smart Approaches for a Sustainabl Development, Procedia Environmental Sciences, 32, 110-123.
Pintilii, R.D., Diaconu, D.C., Dobrea, R.C., Gruia, A.K. 2016. Dynamics of the deforested areas in regions affected by aridity in Romania, 16th International Multidisciplinary Scientific Geoconference-SGEM, Vienna, Austria, 401-407.
Rezaei Moghadam, M.H., Sarvati, M.R. and Asghari Sareskanrood S. 2010. Compared Investigation Meandering Pattern by Fractal Geometrical Analysis and Central Angles and Sinuosity Ratio Indices. Journal of Watershed Management Research. 2 (3). [in Persian]
Rodriguez, I., and Rinaldo, A. 1997. Fractal River Basins: Chance and Self-Organization. Cambridge Univ. Press, Cambridge. 547 p.
Schumm, S.A. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull. 67: 597-646.
Shaghaghian, M.R. and Taleb Bidokhti, N. 2008. Existence of turbulence in the river at various time scales. Quarterly journal on Water Engineering. 2: 1-8. [in Persian]
Shen, X.H., Zou, L.J., Zhang, G.F. Su, N. Wu, W.Y. and Yang., S.F. 2011. Fractal Characteristics of the Main Channel of Yellow River and Its Relation to Regional Tectonic Evolution, Geomorphology 127: 64-70
Singh, S. 1992. Quantitative geomorphology of the drainage basin. In: Chouhan TS, Joshi KN (eds) Readings on remote sensing applications. Scientific Publishers, Jodhpur.
Singh, S. 1995. Quantitative analysis of watershed geomorphology using remote sensing techniques. Ann Arid Zone. 34 (4), 243–251.
Sivakumar, B., and Berndtsson, R. 2010. Advances in Data-based Approaches for Hydrologic Modeling and Forecasting, World Scientific, Singapore. 441 pp.
Strahler, A.N. 1952 Hypsometric (Area-Altitude) analysis of erosional topography, Geological Society of America Bulletin, 63; 1117-1142.
Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology, Eart&Space Science News, 38, 6; 913-920.
Strahler, A.N. 1958. Quantitative slope analysis, Geological Society of America Bulletin, 69, 3; 279-300.
Strahler, A.N. 1964. Quantitative geomorphology of drainage basins and channel networks. In Handbook of Applied Hydrology, edited by V. T. Chow, 4-39/4-76. McGraw-Hill, New York.
Tahmasebi, Z., Zal, F. and Ahmadi Khalaji, A. 2015. Morphology of Tourmaline in the Mashhad granites (g2) with using fractal analysis and Diffusion-Limited Aggregation. The Iranian Journal of Crystallography and Mineralogy. 23 (3):417-428. [in Persian]
Turcotte, D.L. 2007. Self-organized Complexity in Geomorphology: Observations and Models. Geomorphology. 91: 302-310.
Valjarević A., Srećković-Batoćanin D., Živković D., Perić M. 2015. GIS analysis of dissipation time of landscape in the Devil's city (Serbia), Acta Montanistica Slovaca, 20 (2), 148-155.
West, G. B., J. H. Brown and B. J. Enquist. 1997. A general model for the origin of allometric scaling laws in biology. Science. 276 (5309): 122-126.
Xia, D., Deng, Y.S., Wang, S.L., Ding, S.W., Cai, C.F., 2015. Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, south China. Nat. Hazards 79(1), 455–478.
Yamani, M. and Sharafi, S. 2012. Geomorphology and effective factors on lateral erosion in Hor Rood River, Lorestan province. Geography and Environmental Planning Journal. 45 (1): 15-32. [in Persian]
Yang, S., Li, Y.H., Gao, Z.L., Niu, Y.B., Bai, H., Wang, K., 2017. Runoff and sediment reduction benefit of hedgerows and fractal characteristics of sediment particles on Loess Plateau slope of engineering accumulation. Trans. Chin. Soc. Agric. Mach. 48 (8), 270–278. https://doi.org/10.6041/j.issn.1000-1298.2017.08.031. (in Chinese with English abstract).
Yu, J.B., Lv, X.F., Bin, M., Wu, H.F., Du, S.Y., Zhou, M., Yang, Y.M., Han, G.X., 2015. Soil erosion processes and sediment sorting associated with. Sci. Rep. 5, 1–9.
_||_Agaard, K. and G. Hartvigsen. 2014. Assessing spatial patterns of plant communities at varying stages of succession. Applied Mathematics. 5: 1842-1851.
Agus Nur, A., Syafri, I., Muslim, D., Hiranawan, F., Raditya, P.P., Sulastri, M. and Abdulah, F. 2016. Earth and Environmental Science. International Symposium on Geophysical Issues.
Ahmadi, A., Neyshabouri, M.R., Rouhipour, H., and Asadi, H. 2011. Fractal dimension of soil aggregates as an index of soil erodibility. Journal of Hydrology 400 (3-4): 305-311.
Alimoradi, M., Ekhtesasi, M.R., Tazeh, M. and Karimi, H. 2018. Calculation of Fractal Dimension of the Geological Formations and Their Relationship to the Formation Sensibility. Physical Georaphy Research Quartrly. 50 (2): 241-253. [in Persian]
Andronache I., Peptenatu D., Ciobotaru A.M., Gruia A.K., Gropoșila N.M. 2016. Using Fractal Analysis in Modeling Trends in the National Economy, Procedia Environmental Sciences 32: 344-351.
Andronache, I., Ahammer, H., Jelinek, H.F., Peptenatu, D., Ciobotaru, A.M., Drăghici, C.C., Pintilii, R.D., Simio,n A.G., Teodorescu, C. 2016. Fractal analysis for studying the evolution of forests. Chaos, Solitons & Fractals. 91: 310–318.
Asadzadeh, F., Jalalzadeh, S. and Samadi A. 2017. Comparison of the physical and chemical properties of the bed and suspended sediments of the Roze-Chay river. Journal of Water and Soil Conservation. 24(2): 273-288. [in Persian]
Bartolo, S.G., Veltri, M. and Primavera L., 2006, Estimated generalized dimensions of river networks. Journal of Hydrology. 322, 181–191.
Bi, L., He, H., Wei, Z., Shi, F., 2012, Fractal properties of landform in the Ordos Block and surrounding areas, China. Geomorphology. 175, 151–162.
Chorley R.J., Kennedy B.A. 1971. Physical geography: a systems approach. Prentice-Hall International, 370, London.
Cui. Y., Li, J., Chen, A., Wu, J., Luo, Q., Rafay, L., He, J., Liu, Y., Wang, D., Lin, Y. and Wu, Ch. 2019. Fractal dimensions of trapped sediment particle size distribution can reveal sediment retention ability of common plants in a dry-hot valley. Catena. 180: 252-262.
Diaconu, D., Drăghici, CC., Pintilii, R.D., Peptenatu, D., Grecu, A. 2016. Management of the Protection Forest Areas in Region Affected by Aridity in Oltenia Southwestern Development Region (Romania), 16th International Multidisciplinary Scientific GeoConference-SGEM, Vienna, Austria, 477-483.
Ding, W.F., Huang, C.H., 2017. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution. Geomorphology 295, 801–810. https://doi.org/10.1016/j.geomorph.2017.08.033.
Enquist, B. J., G. B. West, E. L. Charnov and J. H. Brown. 1999. Allometric scaling of production and life-history variation in vascular plants. Nature. 401(6756): 907-911.
Fattahi, M.H. and Talebzadeh Z. 2017. The Relationship Between Watershed Compactness Coefficient and the Fractal Characteristics. Iran-Water Resources Research. 13 (1): 191-203. [in Persian]
Frontier, S. 1990. Applications of Fractal Theory to Ecology, In P. Legendre and C. Legendre (Eds.), Developments in Numerical Ecology: NATO ASI Series, Springer, Berlin.
Gavrila I.G., Man T., Surdeanu V. 2011. Geomorphological heritage assessment using GIS analysis for geotourism development in Măcin Mountains, Dobrogea, Romania, GeoJournal of Tourism and Geosites, 2 (8): 198-205.
Ghahroudi Tali M, and Derafshi K. 2015. The study of chaos in the flood risk pattern of Tehran. Journal of Spatial Analysis Environmental Hazards. 2 (2):1-16
Hekmatzadeh, A.A., Torabi Haghighi, Hosseini, K. and Klove, B. 2018. Fractal analysis of river flow time series: a case study on Shapur river. Geophysical Research Abstracts. 20.
Horton, R.E. 1932. Drainage Watershed characteristics. Am Geophys Union Trans. 13: 348-352.
Khan S. Ganguly A.R. and Saigal S. 2005. Detection and Predictive Modeling of Chaos In Finite Hydrologycal Time Series, Nonlinear Processes in Geophysics. 12: 41-53.
Khanbabaei, Z., Karam, A. and Rostamizad, G. 2013. Studying Relationships between the Fractal Dimension of the Drainage Basins and Some of Their Geomorphological Characteristics. International Journal of Geosciences. 4: 636-642.
Kršák B., Blistan P., Pauliková A., Puškárovác P., Kovanič L., Palková J., Zelizňaková V. 2016. Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Measurement, 91, 276–287.
Kusak, M., 2014, Methods of fractal geometry used in the study of complex geomorphic netwoks, AUC. Geographica. 49 (2): 99–110.
Kutlu T, Ersahin S and Yetgin B, 2008. Relations between solid fractal dimension and some physical properties of soils formed over alluvial and colluvial deposits. Journal of Food, Agriculture and Environment. 6: 445-449.
Lisi B., Honglin., H, Zhanyu, W. and Feng, S. 2012. Fractal Properties of Landforms in the Ordos Block and Surrounding Areas, China. Geomorphology. PP. 151-162.
Long, C. Y., Y. Zhao and H. Jafari. 2014. Mathematical models arising in the fractal forest Gap via local fractional calculus. Hindawi Publishing Corporation. Abstract and Applied Analysis. 6 pages.
Lyu, X., Yu, J., Zhou, M., Ma, B., Wang, C., Han, G., Guan, B., Wu, H., Li, Y., Wang, D., 2015. Changes of soil Patricle Size Distribution in Tidal Flats in the Yellow River Delta. J. Plos One. 10(3), e0121368.
Mandelbrot, B.B. 1982. The fractal geometry of nature. W.H. Freeman and Company. New York. 468 p.
Miller, V.C. 1953. A quantitative geomorphologic study of drainage watershed characteristics in the Clinch Mountain area. Virginia and Tennessee, Project Nr 389042, Tech Report 3. Columbia University Department of Geology, ONR Geography Branch, New York.
Mofidi, S., Eskandari, M., Pazira, E., Homaee, M., 2018. Using fractal models for quantifying soil structure and comparison with classical methods. water soil Resour. Conserv. 7, 89–101
Mohammadi, M., Shabanpour, M., Mohammadi, M.H. and Davatgar, N. 2019. Characterizing Spatial Variability of Soil Textural Fractions and Fractal Parameters Derived from Particle Size Distributions. Pedosphere. 29 (2): 224-234.
Morisawa, M.E. 1962. Quantitative Geomorphology of Some Watersheds in the Appalachian Plateau. Geological Society of America Bulletin, 73, 1025-1046.
Peterson, G. 2000. Scaling ecological dynamics: self-organization, hierarchical structure, and ecological resilience. Climatic Change. 44(3): 291-309.
Petrisor, A.I., Andronache, I., Petrișor, L.E., Ciobotaru, A.M., Peptenatu, D. 2016. Assessing the fragmentation of the green infrastructure in Romanian cities using fractal models and numerical taxonomy, Edited by: Ioja, I.C.; Comanescu, L.; Dumitrache, L.; Nedelea, A.; Nita, M.R., Ecosmart - Environment at Crossroads: Smart Approaches for a Sustainabl Development, Procedia Environmental Sciences, 32, 110-123.
Pintilii, R.D., Diaconu, D.C., Dobrea, R.C., Gruia, A.K. 2016. Dynamics of the deforested areas in regions affected by aridity in Romania, 16th International Multidisciplinary Scientific Geoconference-SGEM, Vienna, Austria, 401-407.
Rezaei Moghadam, M.H., Sarvati, M.R. and Asghari Sareskanrood S. 2010. Compared Investigation Meandering Pattern by Fractal Geometrical Analysis and Central Angles and Sinuosity Ratio Indices. Journal of Watershed Management Research. 2 (3). [in Persian]
Rodriguez, I., and Rinaldo, A. 1997. Fractal River Basins: Chance and Self-Organization. Cambridge Univ. Press, Cambridge. 547 p.
Schumm, S.A. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull. 67: 597-646.
Shaghaghian, M.R. and Taleb Bidokhti, N. 2008. Existence of turbulence in the river at various time scales. Quarterly journal on Water Engineering. 2: 1-8. [in Persian]
Shen, X.H., Zou, L.J., Zhang, G.F. Su, N. Wu, W.Y. and Yang., S.F. 2011. Fractal Characteristics of the Main Channel of Yellow River and Its Relation to Regional Tectonic Evolution, Geomorphology 127: 64-70
Singh, S. 1992. Quantitative geomorphology of the drainage basin. In: Chouhan TS, Joshi KN (eds) Readings on remote sensing applications. Scientific Publishers, Jodhpur.
Singh, S. 1995. Quantitative analysis of watershed geomorphology using remote sensing techniques. Ann Arid Zone. 34 (4), 243–251.
Sivakumar, B., and Berndtsson, R. 2010. Advances in Data-based Approaches for Hydrologic Modeling and Forecasting, World Scientific, Singapore. 441 pp.
Strahler, A.N. 1952 Hypsometric (Area-Altitude) analysis of erosional topography, Geological Society of America Bulletin, 63; 1117-1142.
Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology, Eart&Space Science News, 38, 6; 913-920.
Strahler, A.N. 1958. Quantitative slope analysis, Geological Society of America Bulletin, 69, 3; 279-300.
Strahler, A.N. 1964. Quantitative geomorphology of drainage basins and channel networks. In Handbook of Applied Hydrology, edited by V. T. Chow, 4-39/4-76. McGraw-Hill, New York.
Tahmasebi, Z., Zal, F. and Ahmadi Khalaji, A. 2015. Morphology of Tourmaline in the Mashhad granites (g2) with using fractal analysis and Diffusion-Limited Aggregation. The Iranian Journal of Crystallography and Mineralogy. 23 (3):417-428. [in Persian]
Turcotte, D.L. 2007. Self-organized Complexity in Geomorphology: Observations and Models. Geomorphology. 91: 302-310.
Valjarević A., Srećković-Batoćanin D., Živković D., Perić M. 2015. GIS analysis of dissipation time of landscape in the Devil's city (Serbia), Acta Montanistica Slovaca, 20 (2), 148-155.
West, G. B., J. H. Brown and B. J. Enquist. 1997. A general model for the origin of allometric scaling laws in biology. Science. 276 (5309): 122-126.
Xia, D., Deng, Y.S., Wang, S.L., Ding, S.W., Cai, C.F., 2015. Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, south China. Nat. Hazards 79(1), 455–478.
Yamani, M. and Sharafi, S. 2012. Geomorphology and effective factors on lateral erosion in Hor Rood River, Lorestan province. Geography and Environmental Planning Journal. 45 (1): 15-32. [in Persian]
Yang, S., Li, Y.H., Gao, Z.L., Niu, Y.B., Bai, H., Wang, K., 2017. Runoff and sediment reduction benefit of hedgerows and fractal characteristics of sediment particles on Loess Plateau slope of engineering accumulation. Trans. Chin. Soc. Agric. Mach. 48 (8), 270–278. https://doi.org/10.6041/j.issn.1000-1298.2017.08.031. (in Chinese with English abstract).
Yu, J.B., Lv, X.F., Bin, M., Wu, H.F., Du, S.Y., Zhou, M., Yang, Y.M., Han, G.X., 2015. Soil erosion processes and sediment sorting associated with. Sci. Rep. 5, 1–9.