ارزیابی مکانی حساسیت سیلگیری با استفاده از روشهای تقویت تطبیقی و بستهبندی در یادگیری ماشین
مریم جهانبانی 1 , حسین آقا محمدی 2 , محمدحسن وحیدنیا 3 , زهرا عزیزی 4
1 - دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران.
2 - استادیار دانشکده منابع طبیعی و محیط زیست ، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات
3 - استادیار دانشکده منابع طبیعی و محیط زیست ، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران
4 - استادیار گروه سنجش از دور و GIS، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
الکلمات المفتاحية: سیل, سیستم اطلاعات مکانی, مدلهای یادگیری ماشین ترکیبی, تقویت تطبیقی, الگوریتم بستهبندی,
ملخص المقالة :
سیل هر ساله میلیاردها دلار خسارت به کشورها وارد می کند که معیشت افراد را تهدید می کند. در نتیجه، تهدیدات اجتماعی-اقتصادی قابل توجهی برای جمعیت در سراسر جهان ایجاد می کند. بنابراین باید کنترل و مهار شود. در این راستا الگوریتمهای یادگیری ماشین به همراه سیستمهای اطلاعات جغرافیایی، ابزارهای اولیهای هستند که در مدلسازی و تحلیل کنترل سیلاب مؤثر هستند. هدف از این تحقیق شناسایی بخشی از مناطق حساس به سیل در حوضه آبریز هراز در استان مازندران با استفاده از روشهای مجموعهای در الگوریتمهای یادگیری ماشینی است. روند پژوهش به شرح زیر میباشد: ابتدا داده های نقاط سیلاب تهیه شد. سپس، 70 درصد از حدود 200 موقعیت نمونه برای مدلسازی و 30 درصد باقیمانده برای اعتبارسنجی نقشه های تولید شده استفاده شدند. سپس عوامل موثر شامل زاویه شیب، جهت شیب، توپوگرافی، نوع خاک، پوشش زمین، فاصله از رودخانه، بارندگی سالانه، شاخص پوشش گیاهی تفاوت نرمال شده، شاخص انتقال رسوب، شاخص رطوبت توپوگرافی و شاخص تراکم آبراهه برای وزن دادن تاثیر هر عامل با استفاده از الگوریتم های یادگیری ماشین جمعی استفاده شده است. بر اساس نتایج این مطالعه، منحنی مشخصه عملکرد سیستم (ROC) ترسیم شد و مساحت زیر منحنی (AUC) برای اعتبار سنجی نقشه منطقه مستعد سیل محاسبه شد. یافتهها نشان داد که مدل تقویت تطبیقی دقیقتر از مدل بگینگ در تهیه نقشه حساسیت سیلابی است. تهیه نقشه حساسیت سیل نقشی محوری در توانمندسازی برنامهریزان و مدیران شهری برای کاهش و حفاظت پیشگیرانه در برابر پیامدهای نامطلوب سیل بازی میکند. مقامات مدیریت سیل در وزارت نیرو می توانند از مدل مجموعه پیشنهادی برای کمک به مدیریت بلایا و کاهش خطرات در مطالعات آتی استفاده کنند.