کاربرد یادگیری بدون نظارت در کشف تقلبات بیمه اتومبیل (الگوریتم جنگل ایزوله)
الموضوعات :
حسابداری مدیریت
فربد خانی زاده
1
,
فرزان خامسیان
2
,
مریم اثنی عشری
3
1 - استادیار، گروه پژوهشی بیمههای اموال و مسئولیت، پژوهشکده بیمه، تهران، ایران
2 - استادیار، گروه پژوهشی عمومی بیمه، پژوهشکده بیمه، تهران، ایران.
3 - استادیار، گروه پژوهشی بیمههای اموال و مسئولیت، پژوهشکده بیمه، تهران، ایران. (نویسنده مسئول)
تاريخ الإرسال : 02 الخميس , رجب, 1443
تاريخ التأكيد : 24 السبت , ذو الحجة, 1443
تاريخ الإصدار : 25 الثلاثاء , محرم, 1444
الکلمات المفتاحية:
الگوریتم بدون نظارت,
جنگل ایزوله,
کشف تقلب,
بیمه خودرو,
ملخص المقالة :
استراتژی شرکتهای بیمه در مقابله با تخلفات و تقلبات، بسیار حائز اهمیت میباشد. نداشتن چنین برنامهای برای جلوگیری از تقلبات بیمهای و پرداخت سریع خسارت بیمهگذاران، ممکن است در کوتاه مدت موجب رضایت مشتریان و افزایش پورتفوی شرکتها گردد؛ اما در بلندمدت عواقب ناگواری را برای صنعت بیمه به همراه دارد. بهعبارت دیگر، هزینه پروندههای تقلب خسارت در طول زمان بهصورت افزایش حق بیمه و غیرمستقیم به بیمهگذاران منتقل میگردد. هدف از این مطالعه، ارائه مکانیزمی به شرکتهای بیمه جهت کشف تقلب است. دستیابی به این هدف از طریق الگوریتم بدون نظارت و جهت کشف ناهنجاری آشکار در مجموعه داده میباشد. استفاده از الگوریتم مزبور به علت تجمیعی بودن آن باعث افزایش دقت در تشخیص پروندههای مشکوک به تقلب و کاهش موارد مثبت کاذب میگردد. بر اساس نتایج مقاله خسارت وارده به راننده مقصر، نوع و کاربری خودرو، جنسیت زیاندیده از مهمترین شاخصها در کشف پروندههای مشکوک به تقلب هستند.
المصادر:
اصغری اسکوئی، محمدرضا؛ خانیزاده، فربد و بهادر، آزاده، (1399)، کاربرد دادهکاوی با استفاده از الگوریتمهای یادگیری ماشین برای بررسی تاثیر ویژگیهای خودرو در پیشبینی ریسک خسارت مالی در رشته بیمه شخص ثالث، فصلنامه علمی-پژوهشی پژوهشنامه بیمه، 35(1)، 34-65.
جوادیان کوتنائی، اکبر؛ عباسعلی پورآقاجان سرحمامی، عباسعلی و حسینی شیروانی، میرسعید (1399)، ارائه مدل شناسایی تقلب مالیاتی بر مبنای ترکیب الگوریتم درخت تصمیم ID3 بهبود یافته و شبکههای عصبی پرسپترون چندلایه، نشریـه علمـی حسابداری مدیریت، 46 (13)، 53-70
تاراسی، مجتبی؛ بنی طالبی دهکردی، بهاره و زمانی، بهزاد (1398)، پیش بینی گزارشگری مالی متقلبانه از طریق شبکه عصبی مصنوعی(ANN)، نشریـه علمـی حسابداری مدیریت، 40 (12)، 63-79
Abe, N., Zadrozny, B., & Langford, J., (2006), Outlier detection by active learning, In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, 504-509.
Alghushairy, O., Alsini, R., Soule, T., & Ma, X. (2020). A review of local outlier factor algorithms for outlier detection in big data streams. Big Data and Cognitive Computing, 5(1), 1.
Artís, M., Ayuso, M., & Guillén, M., (2002), Detection of automobile insurance fraud with discrete choice models and misclassified claims, Journal of Risk and Insurance, 69(3), 325-340.
Aziz, R. M., Baluch, M. F., Patel, S., & Ganie, A. H. (2022). LGBM: a machine learning approach for Ethereum fraud detection. International Journal of Information Technology, 1-11.
Belhadji, B., & Dionne, G., (1997), Development of an Expert System for Automatic Detection of Automobile Insurance Fraud (No. 97-06), Ecole des Hautes Etudes Commerciales de Montreal-Chaire de gestion des risques.
Brockett, P. L., Xia, X., & Derrig, R. A., (1998), Using Kohonen's self-organizing feature map to uncover automobile bodily injury claims fraud, Journal of Risk and Insurance, 245-274.
Chandola, V., Banerjee, A., & Kumar, V., (2009), Anomaly Detection: A Survey, ACM Computing Surveys, 41(3), 1-58.
Cummins, J. D., & Tennyson, S., (1992), Controlling automobile insurance costs, Journal of Economic Perspectives, 6(2), 95-115.
Derrig, R. A., & Ostaszewski, K. M., (1995), Fuzzy techniques of pattern recognition in risk and claim classification, Journal of Risk and Insurance, 447-482.
Gopdarzi, A., & Janatbabaei, S., (2017), Evaluation of Three Data Mining Algorithms (Decision Tree, Naive Bayes, Logistic Regression) in Auto Insurance Fraud Detection, Insurance Research, 1(2), 61-80.
Gupta, R. Y., Mudigonda, S. S., Baruah, P. K., & Kandala, P. K. (2021). Markov model with machine learning integration for fraud detection in health insurance. arXiv preprint arXiv:2102.10978.
Hastie, T., Tibshirani, R., & Friedman, J., (2009), Unsupervised learning, In The elements of statistical learning (pp. 485-585), Springer, New York.
Khanizadeh, F., Khamesian, F., & Bahiraie, A., (2021), Customer Segmentation for Life Insurance in Iran Using K-means Clustering, International Journal of Nonlinear Analysis and Applications, 12(Special Issue), 633-642.
Lison, P., (2015), An introduction to machine learning, Language Technology Group (LTG), 1(35), 1-35.
Liu, X., Yang, J. B., & Xu, D. L., (2020), Fraud detection in automobile insurance claims: A
statistical review, In Developments of Artificial Intelligence Technologies in Computation and Robotics: Proceedings of the 14th International FLINS Conference (FLINS 2020), 1003-1012.
Obodoekwe, N., & Haar, D. T. V. D. (2019, February). A comparison of machine learning methods applicable to healthcare claims fraud detection. In International Conference on Information Technology & Systems (pp. 548-557). Springer, Cham.
Pang, G., Shen, C., Cao, L., & Hengel, A. V. D. (2021). Deep learning for anomaly detection: A review. ACM Computing Surveys (CSUR), 54(2), 1-38.
Polhul, T., & Yarovyi, A., (2019), Development of a method for fraud detection in heterogeneous data during installation of mobile applications, Eastern-European Journal of Enterprise Technologies, 1(2), 65-75.
Ruff, L., Vandermeulen, R. A., Görnitz, N., Binder, A., Müller, E., Müller, K. R., & Kloft, M. (2019). Deep semi-supervised anomaly detection. arXiv preprint arXiv:1906.02694.
Rukhsar, L., Bangyal, W. H., Nisar, K., & Nisar, S. (2022). Prediction of insurance fraud detection using machine learning algorithms. Mehran University Research Journal Of Engineering & Technology, 41(1), 33-40
Severino, M. K., & Peng, Y. (2021). Machine learning algorithms for fraud prediction in property insurance: Empirical evidence using real-world microdata. Machine Learning with Applications, 5, 100074.
Smiti, A. (2020). A critical overview of outlier detection methods. Computer Science Review, 38, 100306.
Subudhi, S., & Panigrahi, S., (2018), Detection of automobile insurance fraud using feature selection and data mining techniques, International Journal of Rough Sets and Data Analysis (IJRSDA), 5(3), 1-20.
Tiwari, P., Mehta, S., Sakhuja, N., Kumar, J., & Singh, A. K. (2021). Credit Card Fraud Detection using Machine Learning: A Study. arXiv preprint arXiv:2108.10005.
Wang, H., Bah, M. J., & Hammad, M. (2019). Progress in outlier detection techniques: A survey. Ieee Access, 7, 107964-108000.
Weisberg, H. I., & Derrig, R. A., (1998), Quantitative methods for detecting fraudulent automobile bodily injury claims. Risques, 35(July–September), 75-99.
_||_