شناسایی و اولویتبندی کاربردهای فناورانه اینترنت اشیا بر مدیریت کیفیت بیمارستانی با استفاده از رویکرد تفسیری ساختاری
الموضوعات :مهدی حسین پور 1 , حسین کریمی 2 , میلاد بخشم 3 , عطیه خدایی 4
1 - استادیار، گروه مدیریت و کارآفرینی، دانشکده علوم اجتماعی، دانشگاه رازی، کرمانشاه، ایران
2 - دانشجوی کارشناسی ارشد، گروه مدیریت و کارآفرینی، دانشکده علوم اجتماعی، دانشگاه رازی، کرمانشاه، ایران
3 - دانشجوی کارشناسی ارشد، گروه مدیریت و کارآفرینی، دانشکده علوم اجتماعی، دانشگاه رازی، کرمانشاه، ایران
4 - دانشجوی دکتری کارآفرینی، دانشکده علوم اجتماعی، دانشگاه رازی، کرمانشاه، ایران
الکلمات المفتاحية: رویکرد تفسیری- ساختاری, کاربرد فناورانه, مدیریت کیفیت بیمارستانی, اینترنت اشیا,
ملخص المقالة :
مقدمه: در طول سالیان اخیر بیمارستانها با چالشهای مختلفی از قبیل کاهش بودجه و افزایش رقابت در حوزههای بهداشتی و درمانی مواجه بودهاند. انتظار میرود که خدمات درمانی مبتنی بر اینترنت اشیا علاوه بر کاهش هزینهها، سطح کیفیت زندگی را افزایش دهد. هدف این پژوهش شناسایی و اولویتبندی کاربردهای فناورانه اینترنت اشیا بر مدیریت کیفیت بیمارستانی با استفاده از رویکرد تفسیری ساختاری میباشد. روش پژوهش: پژوهش حاضر ازلحاظ هدف، کاربردی، از لحاظ ماهیت پژوهشی به صورت آمیخته و از نظر روش گرداوری دادهها یک پژوهش توصیفی - تحلیلی است. مهمترین کاربردهای فناورانه اینترنت اشیا بر مدیریت کیفیت بیمارستانی از طریق روش دلفی(در 2 مرحله) مشخص و برای تجزیهوتحلیل اطلاعات نیز از مدلسازی تفسیری- ساختاری استفاده گردید. یافتهها: کاربردهای کنترل علائم حیاتی فرد بیمار، مراقبت از بیماران بدون نیاز حضور فرد در محل، بررسی موجودی تجهیزات و موارد موردنیاز ضروری، ردگیری و نظارت بر عملکرد کارکنان، بیماران و موجودی، نظارت و تنظیم هوشمند شرایط محیطی نگهداری بیمار و دارو، ویزیت از راه دور بیماران در دوران حاد و خاص، کاهش پسماندهای بیمارستانی، نظارت بر فعالیتهای فیزیکی افراد سالمند و راهاندازی جوامع آنلاین و مشاورههای اینترنتی پزشکی بهعنوان کلیدیترین عوامل شناخته شدند. بحث و نتیجهگیری: با توجه به مؤثر بودن اینترنت اشیا در حوزه مراقبتهای بهداشتی، به مسئولین مراکز درمانی پیشنهاد میگردد که تغییرات مناسبی در حوزه فناوری اطلاعات خود ایجاد کنند تا بتوانند گامهای مفیدی برای ارتقا کیفیت خدمات خود بردارند.
1- Huang Z, Xu X, Ni J, Zhu H, Wang C. Multimodal representation learning for recommendation in Internet of Things. IEEE Internet of Things Journal, 2019; 11; 6(6): 10675-85.
2- Hui H, Zhou C, Xu S, Lin F. A novel secure data transmission scheme in industrial internet of things. China Communications, 2020 28; 17(1): 73-88.DOI: 10.23919/JCC.2020.01.006
3- Izadinia H, Soltani sharif abadi A. Exploring the architecture of intelligent transportation in an IoT-based smart city. First International IoT Conference, Applications and Infrastructure. Esfahan. Iran; 2017. [In Persian]
4- Marques G, Pitarma R, M Garcia N, Pombo N. Internet of Things architectures, technologies, applications, challenges, and future directions for enhanced living environments and healthcare systems: a review. Electronics, 2019; 8(10): 1081. DOI: 10.3390/electronics8101081
5- Baker SB, Xiang W, Atkinson I. Internet of things for smart healthcare: Technologies, challenges, and opportunities. IEEE Access, 2017 29; 5: 26521-44. DOI: 10.1109/ACCESS.2017.2775180
6- Dhanvijay MM, Patil SC. Internet of Things: A survey of enabling technologies in healthcare and its applications. Computer Networks, 2019 22; 153: 113-31.DOI: 10.1016/j.comnet.2019.03.006
7- Qi J, Yang P, Min G, Amft O, Dong F, Xu L. Advanced internet of things for personalised healthcare systems: A survey. Pervasive and Mobile Computing, 2017; 1(41):132-49. DOI: 10.1016/j.pmcj.2017.06.018
8- Koch S. Home telehealth—current state and future trends. International journal of medical informatics, 2006; 75(8): 565-76.
9- Olivares A, Olivares G, Mula F, Górriz JM, Ramírez J. Wagyromag: Wireless sensor network for monitoring and processing human body movement in healthcare applications. Journal of systems architecture, 2011; 57(10): 905-15.
10- Gulcharan NF, Daud H, Nor NM, Ibrahim T, Shamsudin MZ. Investigation of Stability and Reliability of the Patient's Wireless Temperature Monitoring Device. InMoWNet; 2014: 151-159).
DOI: 10.1016/j.procs.2014.12.022
11- Fox GC, Kamburugamuve S, Hartman RD. Architecture and measured characteristics of a cloud based internet of things. In2012 international conference on Collaboration Technologies and Systems (CTS); 2012: 6-12). IEEE.
12- Xiong J, He Z, Deng Y, Zhang M, Zhang Z. Quality management practices and their effects on the performance of public hospitals. International Journal of Quality and Service Sciences; 2017
13- Din IU, Almogren A, Guizani M, Zuair M. A decade of Internet of Things: Analysis in the light of healthcare applications. IEEE Access; 2019; 7: 89967-79.
14- Namazi Z, Kalantari N, Nezamolhosseini SA. IoT and smart health, the benefits and challenges ahead. 3rd International Conference on Applied Research in Computer Engineering and Information Technology; 2015. [In Persian]
15- Byrne S. Remote Medical Monitoring and Cloud-based Internet of Things Healthcare Systems. American Journal of Medical Research, 2019; 6(2): 19-24.
16- Rashidi M, Moghli A, Rasouli R. Designing a Model for Enhancing Organizational Sustainability of Basic Knowledge Employees: Using Delphi Technique. Career and organizational counseling; 2014: 66-94. [In Persian]
17- Aliakbari E, Akbari M. An interpretive structural modeling affected factors on the metropolis Tehran’s viability. Teachers of human sciences(Programing and Space preparation); 2017. [In Persian]
18- Mudgal RK, Shankar R, Talib P, Raj T. Modelling the barriers of green supply chain practices: an Indian perspective. International Journal of Logistics Systems and Management, 2010; 7(1): 81-107.
19- Zar JH. Biostatistical analysis 4th edition prentice-hall. Jersey, New; 1999.
20- Olfat l, Shahriarinia A. Interpretive structural modeling of the factors influencing the choice of partner in the agile supply chain. Production Management and Operations; 2013; 2: 109-128. [In Persian]
21- Bayo-Monton JL, Martinez-Millana A, Han W, Fernandez-Llatas C, Sun Y, Traver V. Wearable sensors integrated with Internet of Things for advancing eHealth care. Sensors, 2018; 18(6): 1851.
DOI: 10.3390/s18061851
22- Ben-Daya M, Hassini E, Bahroun Z. Internet of things and supply chain management: a literature review. International Journal of Production Research, 2019; 57(15-16): 4719-42. DOI:10.1080/00207543.2017.1402140
23- Rath M, Pattanayak B. Technological improvement in modern health care applications using Internet of Things (IoT) and proposal of novel health care approach. International Journal of Human Rights in Healthcare; 2019. DOI: 10.1108/IJHRH-01-2018-0007
24- Manogaran G, Varatharajan R, Lopez D, Kumar PM, Sundarasekar R, Thota C. A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Generation Computer Systems, 2018; 82: 375-87. DOI: 10.1016/j.future.2017.10.045
25- Wagner C, Gulácsi L, Takacs E, Outinen M. The implementation of quality management systems in hospitals: a comparison between three countries. BMC health services research, 2006; 6(1): 50. DOI: 10.1186/1472-6963-6-50
_||_1- Huang Z, Xu X, Ni J, Zhu H, Wang C. Multimodal representation learning for recommendation in Internet of Things. IEEE Internet of Things Journal, 2019; 11; 6(6): 10675-85.
2- Hui H, Zhou C, Xu S, Lin F. A novel secure data transmission scheme in industrial internet of things. China Communications, 2020 28; 17(1): 73-88.DOI: 10.23919/JCC.2020.01.006
3- Izadinia H, Soltani sharif abadi A. Exploring the architecture of intelligent transportation in an IoT-based smart city. First International IoT Conference, Applications and Infrastructure. Esfahan. Iran; 2017. [In Persian]
4- Marques G, Pitarma R, M Garcia N, Pombo N. Internet of Things architectures, technologies, applications, challenges, and future directions for enhanced living environments and healthcare systems: a review. Electronics, 2019; 8(10): 1081. DOI: 10.3390/electronics8101081
5- Baker SB, Xiang W, Atkinson I. Internet of things for smart healthcare: Technologies, challenges, and opportunities. IEEE Access, 2017 29; 5: 26521-44. DOI: 10.1109/ACCESS.2017.2775180
6- Dhanvijay MM, Patil SC. Internet of Things: A survey of enabling technologies in healthcare and its applications. Computer Networks, 2019 22; 153: 113-31.DOI: 10.1016/j.comnet.2019.03.006
7- Qi J, Yang P, Min G, Amft O, Dong F, Xu L. Advanced internet of things for personalised healthcare systems: A survey. Pervasive and Mobile Computing, 2017; 1(41):132-49. DOI: 10.1016/j.pmcj.2017.06.018
8- Koch S. Home telehealth—current state and future trends. International journal of medical informatics, 2006; 75(8): 565-76.
9- Olivares A, Olivares G, Mula F, Górriz JM, Ramírez J. Wagyromag: Wireless sensor network for monitoring and processing human body movement in healthcare applications. Journal of systems architecture, 2011; 57(10): 905-15.
10- Gulcharan NF, Daud H, Nor NM, Ibrahim T, Shamsudin MZ. Investigation of Stability and Reliability of the Patient's Wireless Temperature Monitoring Device. InMoWNet; 2014: 151-159).
DOI: 10.1016/j.procs.2014.12.022
11- Fox GC, Kamburugamuve S, Hartman RD. Architecture and measured characteristics of a cloud based internet of things. In2012 international conference on Collaboration Technologies and Systems (CTS); 2012: 6-12). IEEE.
12- Xiong J, He Z, Deng Y, Zhang M, Zhang Z. Quality management practices and their effects on the performance of public hospitals. International Journal of Quality and Service Sciences; 2017
13- Din IU, Almogren A, Guizani M, Zuair M. A decade of Internet of Things: Analysis in the light of healthcare applications. IEEE Access; 2019; 7: 89967-79.
14- Namazi Z, Kalantari N, Nezamolhosseini SA. IoT and smart health, the benefits and challenges ahead. 3rd International Conference on Applied Research in Computer Engineering and Information Technology; 2015. [In Persian]
15- Byrne S. Remote Medical Monitoring and Cloud-based Internet of Things Healthcare Systems. American Journal of Medical Research, 2019; 6(2): 19-24.
16- Rashidi M, Moghli A, Rasouli R. Designing a Model for Enhancing Organizational Sustainability of Basic Knowledge Employees: Using Delphi Technique. Career and organizational counseling; 2014: 66-94. [In Persian]
17- Aliakbari E, Akbari M. An interpretive structural modeling affected factors on the metropolis Tehran’s viability. Teachers of human sciences(Programing and Space preparation); 2017. [In Persian]
18- Mudgal RK, Shankar R, Talib P, Raj T. Modelling the barriers of green supply chain practices: an Indian perspective. International Journal of Logistics Systems and Management, 2010; 7(1): 81-107.
19- Zar JH. Biostatistical analysis 4th edition prentice-hall. Jersey, New; 1999.
20- Olfat l, Shahriarinia A. Interpretive structural modeling of the factors influencing the choice of partner in the agile supply chain. Production Management and Operations; 2013; 2: 109-128. [In Persian]
21- Bayo-Monton JL, Martinez-Millana A, Han W, Fernandez-Llatas C, Sun Y, Traver V. Wearable sensors integrated with Internet of Things for advancing eHealth care. Sensors, 2018; 18(6): 1851.
DOI: 10.3390/s18061851
22- Ben-Daya M, Hassini E, Bahroun Z. Internet of things and supply chain management: a literature review. International Journal of Production Research, 2019; 57(15-16): 4719-42. DOI:10.1080/00207543.2017.1402140
23- Rath M, Pattanayak B. Technological improvement in modern health care applications using Internet of Things (IoT) and proposal of novel health care approach. International Journal of Human Rights in Healthcare; 2019. DOI: 10.1108/IJHRH-01-2018-0007
24- Manogaran G, Varatharajan R, Lopez D, Kumar PM, Sundarasekar R, Thota C. A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Generation Computer Systems, 2018; 82: 375-87. DOI: 10.1016/j.future.2017.10.045
25- Wagner C, Gulácsi L, Takacs E, Outinen M. The implementation of quality management systems in hospitals: a comparison between three countries. BMC health services research, 2006; 6(1): 50. DOI: 10.1186/1472-6963-6-50