برخی خواص و عدد احاطهگر متمم یک گراف جدید وابسته به یک حلقه جابجایی
الموضوعات :
1 - گروه ریاضی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران
الکلمات المفتاحية: Annihilating ideal of a ring, maximal N-prime of (o), planar graph, domination number,
ملخص المقالة :
در این مقاله، برخی خواص متمم گراف جدید وابسته به حلقهی جابجایی R ، مورد بررسی قرار میگیرد. ...
[1] M. Afkhami and, K. Khashyarmanesh, Some results on the annihilator graph of a commutative ring, Czechoslovak Mat. J. 67 (2017), 151-169.
[2] M. Afkhami, N. Hoseini and K. Khashyarmanesh, The annihilator ideal graph of a commutative ring, Note Math. 36 (2017),1-10.
[3] S. Akbari, A. Alilou, J. Amjadi and S.M. Sheikholeslami, The co-annihilating ideal graphs of commutative rings, Canad. Math. Bull. 60 (2017), 3-11.
[4] A. Alilou, J. Amjadi and S.M. Sheikholeslami, A new graph associated to a commutative ring, Discrete Math. Algorithm. Appl. 8 (2016), (13 pages).
[5] A. Alilou and J. Amjadi, The sum-annihilating essential ideal graph of a commutative ring, Commun. Comb. Optim. 1 (2016), 117-135.
[6] D. D. Anderson, and M. Naseer, Beck’s coloring of a commutative ring, J. Algebra 159 (1993), 500-514.
[7] D.F. Anderson and A. Badawi, The zero-divisor graph of a commutative semigroup: A survey, Groups, Modules, and Model Theory-surveys and Developments (2017), 23-99.
[8] D.F. Anderson and P. S. Livingston, The Zero-Divisor Graph of a Commutative Ring, J. Algebra 217 (1999), 434-447.
[9] H.Ansari-Toroghy, F. Farshadifar and F. Mahboobi-Abkenar, On the ideal-based zero-divisor graph, IEJA (to appear).
[10] H.Ansari-Toroghy, F. Farshadifar and F. Mahboobi-Abkenar, The small intersection graph relative to multiplication modules, Journal of Algebra and Related Topics 4 (2016), 21-32.
[11] M. F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison-wesley publishing company (1969).
[12] A. Badawi, Recent results on the annihilator graph of a commutative ring: A survey, Nearrings, Nearfields and Related Topics, Publisher: World Scientific (2016).
[13] I. Beck, Coloring of a commutative ring, J. Algebra 116 (1988), 208-226.
[14] M. Behboodi and Z. Rakeei, The Annihilating-ideal graph of commutative ring I, J. Algebra Appl. 10 (2011), 727-739.
[15] M. Behboodi and Z. Rakeei, The Annihilating-ideal graph of commutative ring II, J. Algebra Appl. 10 (2011), 741-753.
[16] S. Ebrahimi Atani, S. Dolati Pish Hesari and M. Khoramdel, A graph associated to proper non-small ideals of a commutative ring, Comment. Math. Univ. Carolin 58 (2017), 1-12.
[17] Z. Ebrahimi Sarvandi and S. Ebrahimi Atani, The total graph of acommutative smiring with respect to proper ideals, J. Algebra and relative topics 3 (2015), 27-41.
[18] R.Gilmer, Multiplicative Ideal
Theory, Marcel-Dekker, New York, (1972).
[19] T.W. Haynes, S. T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, New York (1998).
[20] W. Heinzer and J. Ohm, On the Noetherian-like rings of E. G. Evans, Proc. Amer. Math. Soc. 34 (1972), 73-74.
[21] J.A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, Inc, New York (1988).
[22] I. Kaplansky, Commutative rings, The University of Chicago Press, Chicago (1974).
[23] K. Kuratowski, Sur le Problèm des courbes gauches en topologie, Fund. Mat. 15 (1930), 271-283.
[24] E. Matlis, The minimal prime spectrum of reduced ring, Illions J. Math. 27 (1983), 353-391.
[25] R. Nikandish, M. J. Nikmehr and M. Bakhtyari, Coloring of the annihilator graph of a commutative ring, J. Algebra Appl. 15 (206), (13 pages).
[26] R. Nikandish, M. J. Nikmehr and M. Bakhtyari, Some fiuther results on the annihilator ideal graph of a commutative ring, U.P.B.Sci. Bull., Series A 79 (2017), 99-108.
[27] R.Y. Sharp, Steps in Commutative Algebra (second edition), London Mathematics Society Students Texts, 51 Cambridge University Press, Cambridge, (1990).
[28] S. Visweswaran and Hiren D. Patel, A graph associated with the set of all nonzero annihilating ideals of a commutative ring, Discrete Math. Algorithm. Appl. 6 (2014) [22 pages].
[29] D.B. West, Introduction to Graph Theory (second edition), Prentice Hall, USA