بررسی مشتقات جهتی و جزئی نگاشت های چند بعدی فازی تحت مشتق پذیری تعمیم یافته
الموضوعات :محسن میری کرباسکی 1 , محمدرضا بلوچ شهریاری 2 , ام البنین صداقت فر 3
1 - گروه ریاضی، واحد شهیدحاج قاسم سلیمانی، دانشگاه آزاد اسلامی، کرمان، ایران
2 - گروه ریاضی، واحد شهیدحاج قاسم سلیمانی، دانشگاهآزاداسلامی، کرمان، ایران
3 - گروه ریاضی، واحد یادگار امام خمینی، دانشگاه آزاد اسلامی، تهران، ایران
الکلمات المفتاحية: Directional generalized differentiability, Partial generalized differentiability, Multi-dimensional fuzzy mappings, n-dimensional fuzzy numbers, Total generalized differentiability,
ملخص المقالة :
مسائل مربوط به بهینه سازی فازی در مقالات اخیر با الهام از مفاهیم تفاضل هاکوهارای تعمیم یافته و مشتق پذیری هاکوهارای تعمیم یافته برای توابع یک بعدی از فضای R به توی E توسط نویسندگان زیادی مورد بحث قرار گرفته است و پیشرفت قابل ملاحظه ای داشته است. در این مقاله، مفهوم مشتق پذیری تعمیم یافته کلی با استفاده از تفاضل تعمیم یافته از فضای R^n به توی E برای نگاشت های چند بعدی فازی، معرفی شده است. همچنین مشتق پذیری تعمیم یافته کلی فوق مورد بررسی قرار گرفته شده است و در ادامه مفهوم مشتق پذیری تعمیم یافته جهتی و مشتق پذیری تعمیم یافته جزئی برای نگاشت های چند بعدی فازی تعریف و به تفصیل بحث شده است، سپس مشتق پذیری تعمیم یافته جهتی و مشتق پذیری تعمیم یافته جزئی برحسب مشتق پذیری تعمیم یافته سطح به سطح بیان شده است. همچنین خواص و ارتباط بین آنها بحث شده است. در نهایت روابط بین مشتق پذیری تعمیم یافته کلی، مشتق پذیری تعمیم یافته جهتی و مشتق پذیری تعمیم یافته جزئی برای نشان دادن توانایی و قابلیت روابط بین آنها با ذکر چند مثال نشان داده شده است.
[1] Alikhani, R. and Bahrami, F., Global solutions of fuzzy integrodifferential equations under generalized differentiability by the method of upper and lower solutions, Inform. Sci., 295 (2015), 600-608.
[2] Allahviranloo, T., Gouyandeh, Z., Armand, A. and Hasanoglu, A., On fuzzy solutions for heat equation based on generalized Hukuhara differentiability, Fuzzy Sets Syst. 265(2015)123.
[3] Bede, B., Mathematics of Fuzzy Sets and Fuzzy Logic, Studies in fuzziness and Soft computing, 295. Springer, Heidelberg, 2013. Springer, London, 2013.
[4] B. Bede, S.G. Gal, Generalizations of the differentiability of fuzzy number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst. 151 (3) (2005)
[5] Bede, B., Rudas, I.J., and Bencsik, A.L., First order linear fuzzy differential equations under generalized differentiability, Inform. Sci., 177(7) (2007), 1648-1662.
[6] Bede, B. and Stefanini, L., Generalized differentiability of fuzzy-valued functions, Fuzzy Sets Syst. 230(0) (2013) 119- 141.
[7] Ebrahimnejad, A., New method for solving fuzzy transportation problems with LR at fuzzy numbers, Inform. Sci. 357 (2016) 108-124.
[8] Gasilov, N. A., Amrahov, S. E., Fatullayev, A. G. and Hashimoglu, I. F., Solution method for a boundary value problem with fuzzy forcing function, Inform. Sci. 317 (2015) 349-368.
[9] Goetschel, R., and Voxman, W., Elementary fuzzy calculus, Fuzzy sets and systems, 18 (1986), 31-43.
[10] Gomes, L. T. and Barros, L. C., A note on the generalized difference and the generalized differentiability, Fuzzy Sets Syst. 280 (2015) 142-145.
[11] Hukuhara, M., Integration des applications mesurables dont lavaleur est uncompact convex, Funkc. Ekvacioj 10 (1967) 205-223.
[12] Klir, George J. and Yuan, Bo, Fuzzy Sets and Fuzzy Logic: Theory and application sprentice Hall PTR, Upper Saddle River, NJ, 1995.
[13] Khastan, A. and Ivaz, K., Numerical solution of fuzzy differential equations by Nystrom method, chaos, Solution and Fractals, 41(2009), 859-868.
[14] Kaleva, O., Fuzzy differential equations, Fuzzy Sets Syst. 24 (1987) 301-317.
[15] Lupulescu, V., Hukuhara differentiability of interval-valued functions and interval differential equations on time scales, Inform Sci. 248 (2013) 50-67.
[16] Neito, J.J., Khastan, A. and Ivaz, K., Numerical solution of fuzzy differential equations under generalized differentiability, Nonlinear Anal. Hybrid Syst., 3 (2009), 700-707.
[17] Puri, M.L. and Ralescu, D.A., Differentials of fuzzy functions, J. Math. Anal. Appl. 91 (2) (1983) 552-558.
[18] Seikkala, s., On the fuzzy initial value problem, Fuzzy sets and Systems, 24 (1987).
[19] Stefanini, L., A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets Syst. 161 (2010).
[20] Stefanini, L. and Jiménez, M. A., Karush-Kuhn-Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability, Fuzzy Sets and Syst. 283 (2018).
[21] Stefanini, L., A generalization of Hukuhara difference, in D. Dubois, M.A. Lubiano, H. Prade, M.A. Gil, P.Grzegorzewski, O. Hryniewicz (Eds.), Soft Methods for Handling Variability and Imprecision, in Series on Advances in Soft Computing, Springer, 2008.
[22] Wang, G. X. and Wu, C. X., Directional derivatives and subdifferential of convex fuzzy mappings and application in convex fuzzy programming, Fuzzy Sets Syst. 138 (2003)
[23] Zadeh, L. A., Fuzzy sets, Inform. Control. 8 (1965) 338-353.
[24] Zadeh, L. A., The concept of a linguistic variable and its application to approximate reasoning-i, Inform. Sci. 8 (1975) 199-249.
[25] Zadeh, L. A., The concept of a linguistic variable and its application to approximate reasoning- III, Inform. Sci. 9 (1975) 43-80.