مدل تحلیل پوششی داده های ترکیبی برای حل مسائل تصمیم گیری با اعداد GTHF
الموضوعات :طیبه رضائی تازیانی 1 , مهناز برخورداری احمدی 2 , محمد رضا بلوچ شهریاری 3
1 - گروه ریاضی، واحد کرمان، دانشگاه آزاد اسلامی، کرمان، ایران
2 - گروه ریاضی، واحد بندرعباس، دانشگاه آزاد اسلامی، بندرعباس، ایران
3 - گروه ریاضی، واحد کرمان، دانشگاه آزاد اسلامی، کرمان، ایران
الکلمات المفتاحية: generalized trapezoidal hesitant fuzzy numbers (GTHF), Ranking, Data Envelopment Analysis, hesitant fuzzy sets,
ملخص المقالة :
اصولا عدم قطعیت در ذات و نهاد طبیعت جای دارد. برای مواجهه با عدم قطعیت و ابهام موجود در جهان واقعی، منطق دو ارزشی به تدریج جای خود را به منطق فازی داده است. این دیدگاه جدید، عدم قطعیت ناشی از تردید را مدیریت می کند، و در این نوع تصمیم گیری یکی از مسائل مهم جمع آوری اطلاعات فازی مردد و انتخاب گزینه بهینه است. اعداد فازی مردد ذوزنقه ای تعمیمیافته (GTHF) که درجه عضویت آنها توسط چندین عدد فازی ذوزنقه ای بیان میشود، برای حل مساله تصمیمگیری در زندگی واقعی نسبت به اعداد حقیقی مناسب تر است. در این مقاله، به مفهوم جدیدی به نام اعداد فازی مردد ذونقه ای تعمیم یافته و ترکیب آن با تحلیل پوششی داده ها می پردازیم. با استفاده از این اطلاعات مقادیر انحراف و امتیاز را به عنوان ورودی و خروجی مدل تحلیل پوششی داده های دو مرحله ای در نظر می گیریم، سپس از نتایج حاصل جهت ساخت ماتریس مقایسه زوجی استفاده کردیم و در نهایت واحد های تصمیم گیرنده را اولویت بندی نمودیم. برای استفاده از برخی از مفاهیم در روش تصمیمگیری پیشنهادی، ابتدا تعاریفی از مفاهیمی مانند تابع امتیاز و تابع انحراف از اعداد فازی مردد ذوزنقهای تعمیمیافته را ارائه میدهیم. در نهایت، یک مثال عددی برای روش پیشنهادی جهت تایید و کاربردی بودن آن ارائه و نتیجه رتبه بندی را با روش های AP، TOPSIS با اعداد فازی مردد ذوزنقه ای تعمیم یافته و روش تجمع هندسی وزن دار در ]7[ مورد مقایسه قرار میدهیم.
[1] Alcantud, J.C.R., Santos-García, G., Peng X and Zhan J. (2019). Dual extended hesitant fuzzy sets. Symmetry, 11, 714-727. [2] Alirezaee, M. R., Sani, M.R. (2011). New analytical hierarchical process/data envelopment analysis ethodology for ranking decision-making units. International Transactions in Operational Research, 18, 533–544.
[3] Amin, F., Fahmi, A. (2019). Human immunodeficiency virus (HIV) infection model based on triangular neutrosophic cubic hesitant fuzzy number. International Journal of Biomathematics, 12, 1950055-1950088.
[4] Atanassov, K.T. (1986). Intuitionistic fuzzy sets. Fuzzy sets & Systems, 20, 87-96.
[5] Charnes, A., Cooper, W.W. and Rhodes, E.L. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429–444.
[6] Chen, N., Xu, ZS., Xia, M.M. (2013). Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis. Appl Math Model, 37, 2197–2211.
[7] Cheng-Kai, H., Fung-Bao, L., Cheng-Feng, H. (2017). A Hybrid Fuzzy DEA/AHP Methodology for Ranking Units in a Fuzzy Environments. Symmetry, 9, 273-284.
[8] Deli, I. (2020). A TOPSIS method by using generalized trapezoidal hesitant fuzzy numbers and application to a robot selection problem. Journal of Intelligent & Fuzzy Systems, 38, 779-793.
[9] Deli, I., Karaaslan, F., (2020). Generalized trapezoidal hesitant fuzzy numbers and their applications to multiple criteria decision making problems. Soft Computing, https://doi.org/10.1007/s00500-020-05201-2.
[10] Dubois, D., Prade, H. (1983). Ranking fuzzy number in the setting of possibility theory. Inf Sci, 30,183–224.
[11] Hatami-Marbini, A., Agrell, P.J., Tavana, M., Khoshnevis, P., (2017). A flexible cross-efficiency fuzzy data envelopment analysis model for sustainable sourcing. Journal of Cleaner Production, 142, 2761-2779.
[12] Hosseinzadeh Lotfi, F., Ebrahimnejad, Ali., Vaez Ghasemi, M., Moghaddas, Z., (2020). Introduction to data envelopment analysis and fuzzy sets. Data Envelopment Analysis with R, doi: 10.1007/978-3-030-24277-0_1.
[13] Kaufmann A., Gupta M. M. (1988), Fuzzy mathematical models in engineering and anagement science. Elsevier Science Publishers, Amsterdam.
[14] Lertworasirikul, S., Fang, S.C., Joines, J.A., Nuttle, H.L. W. (2003). Fuzzy data envelopment analysis (DEA): a possibility approach. Fuzzy Sets & System, 139, 379-394.
[15] Liao, HC., Xu, ZS., (2014). Some new hybrid weighted aggregation operators under hesitant fuzzy multi criteria decision making environment. Journal of Intelligent & Fuzzy System, 26,1601–1617.
[16] Liao, HC., Xu, ZS. (2014). Subtraction and division operations over hesitant fuzzy sets. Journal of Intelligent & Fuzzy System, 27, 65–72.
[17] Pathinathan, T., Johnson, S.S. (2015). Trapezoidal hesitant fuzzy multi attribute decision making based on TOPSIS. Int Arch Appl Sci Technol, 6, 39–49.
[18] Peng, J.J.,Wang, J.Q.,Wang, J., Yang, L.J., Chen, X.H. (2015). An extension of ELECTRE to multi criteria decision-making problems with multi hesitant fuzzy sets. Inf Sci, 307, 113–126.
[19] Qian, G., Wang, H., & Feng, X. (2013). Generalized hesitant fuzzy sets and their application in decision support system. Knowledge-based systems, 37, 357-365.
[20] Rakhshan, S.A., Kamyad, A.V., Effati, S (2015). Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis. Annals of Operations Research, 226, 505–525.
[21] Rodriguez, R.M., Martinea, L., Torra, V., Herrera, F. (2012). Hesitant fuzzy linguistic term sets for decision making. IEEE Transactions on Fuzzy Systems, 20, 109-119.
[22] Rong, Y., Pei, Z., & Liu, Y. (2020). Hesitant fuzzy linguistic hamy mean aggregation operators and their application to linguistic multiple attribute decision-making. Mathematical problems in engineering, DOI:10.1155/2020/3262618.
[23] Saaty, T.L. (1980). The Analytic Hierarchy Process. McGraw-Hill.
[24] Shang, J., Sueyoshi, T (1995). A unified framework for the selection of a flexible manufacturing system. European Journal of Operational Research, 85, 297–315.
[25] Sinuany-Stern, Z., Mehrez, A., Hadad, Y. (2000). An AHP/DEA methodology for ranking decision-making units. International Transactions in Operation Research, 7, 109-124.
[26] Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25, 529-539.
[27] Torra, V., Narukawa, Y. (2009). On hesitant fuzzy sets and decision. In: The 18th IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, 1378-1382.
[28] Umamaheswari, A., Kumari, P. (2014). Fuzzy topsis and fuzzy VIKOR methods using the triangular fuzzy hesitant sets. International Journal of Computer Science Engineering and Information Technology Research, 4, 15–24.
[29] Wang, J. Q., Wu, J. T., Wang, J., Zhang, H. Y., Chen, X. H. (2014). Interval valued hesitant fuzzy linguistic sets and their applications in multi criteria decision-making problems. Information Sciences, 288, 55–72.
[30] Xia, M.M., Xu, Z. S. (2011). Hesitant fuzzy information aggregation in decision making. Journal of Approximate Reasoning, 52, 395–407
[31] Ye, J. (2013). Multicriteria decision making method using expected values in trapezoidal hesitant fuzzy setting. Journal of Convergence Information Technology, 8, 135-143.
[32] Yu, D. (2013). Triangular hesitant fuzzy set and its application to teaching quality evaluation. Journal of Information and Computational Science, 10, 1925-1934.
[33] Yu, D., Zhang, J., Huang, G. (2016). Dual hesitant fuzzy aggregation operators. Technological and Economic Development of Economy, 22, 194-209.
[34] Z ad eh, L.A. (1965). Fuzzy sets. Information and Con to r o l, 8, 3 8-353.
[35] Zhou, W., Chen, J., X u, Z., M re n c e envelopment analysis and alternative improvement. Information Science, 465, 105-117.
[36] Zhao, H., Yao, R., X u, L., Yuan, Y., Li, G., Deng, W. (2018). Study on
a novel fault damage degree identification method using high order differential mathematical morphology gradient spectrum entropy. Entropy, 20, 682-700.
[34] Zadeh, L.A. (1965). Fuzzy sets. Information and Contorol, 8, 38-353.
[35] Zhou, W., Chen, J., Xu, Z., Meng, S. (2018). Hesitant fuzzy preference envelopment analysis and alternative improvement. Information Science, 465, 105-117.
[36] Zhao, H., Yao, R., Xu, L., Yuan, Y., Li, G., Deng, W. (2018). Study on a novel fault damage degree identification method using high order differential mathematical morphology gradient spectrum entropy. Entropy, 20, 682-700.