ارائه الگوریتم فرا ابتکاری جدید جهت حل مساله انتخاب ویژگی
الموضوعات :مهدی خادم 1 , عباس طلوعی اشلقی 2 , کیامرث فتحی هفشجانی 3
1 - دانشجوی دکتری مدیریت صنعتی، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی،تهران، ایران
2 - استاد، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی،تهران، ایران
3 - استادیار،گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد تهران جنوب، دانشگاه آزاد اسلامی،تهران، ایران
الکلمات المفتاحية: الگوریتم ازدحام ذرات, الگوریتم ژنتیک, الگوریتم قشقایی, مساله انتخاب ویژگی, الگوریتم فرا ابتکاری,
ملخص المقالة :
با توجه به افزایش حجم داده ها و اطلاعات در سالهای اخیر مساله انتخاب مناسبترین ویژگی جهت تصمیم گیری اهمت فراوانی یافته است. روشهای کلاسیک انتخاب ویژگی نمی توانند بر روی داده های بزرگ به درستی عمل نمایند. از آنجا که مسئله انتخاب ویژگی یک مساله سخت و پیچیده است، استفاده از الگوریتمهای فرا ابتکاری جهت حل این مساله مناسب به نظر میرسد. در این مقاله الگوریتم فرا ابتکاری جدیدی با الهام از کوچ عشایر جهت حل مساله انتخاب ویژگی ارائه شده است. این الگوریتم به افتخار ایل قشقایی نامگذاری شده است. در این الگوریتم ترکیبی تابع تناسبی مبتنی بر الگوریتم انتخاب ویژگی و براساس کمینهسازی تعداد ویژگیها و میزان خطای دادهها با استفاده از نتایج شبکه عصبی طراحی شد. سپس الگوریتم فرا ابتکاری قشقایی بر روی این تابع تناسب پیاده سازی شد و نتایج با الگوریتم های فرا ابتکاری مشهور ژنتیک و ازدحام ذرات مورد مقایسه قرار گرفت. نتایج آزمون فرض نشان داد که الگوریتم بهینه سازی قشقایی جهت حل مساله انتخاب ویژگی توسط الگوریتم ژنتیک و ازدحام ذرات مغلوب نمیگردد و به لحاظ همگرایی به جواب بهینه به خوبی آنها عمل میکند.
-
_||_Due to the increase in the volume of data and information in recent years, the issue of choosing the most appropriate feature for decision making has become very important. Classic attribute selection methods cannot work well on big data. Because feature selection is a complex problem, it seems appropriate to use meta-heuristic algorithms to solve this problem. In this paper, a new meta-heuristic algorithm inspired by nomadic migration to solve the feature selection problem is presented. This algorithm is named in honor of the Qashqai tribe. In this hybrid algorithm, the proportional function was designed based on the feature selection algorithm and based on minimizing the number of features and the amount of data error using neural network results. Then the Qashqai meta-heuristic algorithm was implemented on this fitness function and the results were compared with the well-known meta-heuristic algorithms of genetics and particle swarm. The results of the hypothesis test showed that the Qashqai optimization algorithm to solve the feature selection problem by the genetic algorithm and particle swarm is not defeated and in terms of convergence to the optimal solution works well.