The Green and the Invisible: Forging a Synergistic Future for Microalgae in Microbial Biotechnology
الموضوعات : Biotechnological Journal of Environmental Microbiology
1 - دانشگاه آزاد اسلامی، واحد تهران-شمال
الکلمات المفتاحية: Microalgae, Microbial Biotechnology, Sustainability Biorefinery, Synthetic Biology, Bioprocess Engineering,
ملخص المقالة :
The established paradigm of microbial biotechnology, predominantly reliant on heterotrophic platforms like Escherichia coli and Saccharomyces cerevisiae, faces significant sustainability challenges due to its dependence on sugar-based feedstocks. This review contends that microalgae, as photosynthetic microorganisms, represent a pivotal and necessary expansion of the biotechnology toolkit. We articulate a compelling case for integration, highlighting their capacity for autotrophic growth using carbon dioxide and light, which decouples production from agricultural resources. Furthermore, microalgae synthesize a unique portfolio of high-value compounds, such as omega-3 fatty acids and carotenoids, and can deliver integrated ecosystem services like wastewater remediation and carbon capture. Through detailed case reports on the commercial production of astaxanthin, the evolution of the biofuel endeavor into a biorefinery model, and the emerging platform of microalgae for pharmaceutical production, we demonstrate a tangible convergence with conventional bioprocess principles. However, achieving full synergy is hindered by persistent disciplinary divides. This article provides a critical discussion of these gaps, including the need for standardized process engineering and scale-up of photobioreactors, the development of advanced genetic toolboxes, and the cultivation of an interdisciplinary workforce. By systematically addressing these challenges through collaborative efforts in synthetic biology, bioprocess engineering, and techno-economic analysis, the field can unlock a new, sustainable, and productive era for industrial biotechnology. This integration positions microalgae as a central pillar in the transition towards a circular bioeconomy.
Adarme-Vega, T. C., Lim, D. K., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11(1), 96.
Adrio, J. L., & Demain, A. L. (2014). Microbial enzymes: tools for biotechnological processes. Biomolecules, 4(1), 117–139.
Blanken, W., Postma, P. R., de Winter, L., Wijffels, R. H., & Janssen, M. (2016). Predicting microalgae growth. Algal Research, 14, 28–38.
Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.
Capelli, B., Bagchi, D., & Cysewski, G. R. (2013). Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable for human consumption. Natural Products Journal, 3(2).
Carvalho, A. P., Silva, S. O., Baptista, J. M., & Malcata, F. X. (2011). Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Applied Microbiology and Biotechnology, 89(5), 1275–1288.
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.
Chisti, Y. (2012). Are algae a viable source of fuel? Microbial Biotechnology, 5(4), 443–445.
Christenson, L., & Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, 29(6), 686–702.
Clarens, A. F., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science & Technology, 44(5), 1813–1819.
Clark, J. H., & Deswarte, F. E. (2015). The biorefinery concept—an integrated approach. In Introduction to chemicals from biomass (2nd ed.). John Wiley & Sons.
Collet, P., Hélias Arnaud, L., Lardon, L., Ras, M., Goy, R. A., & Steyer, J. P. (2011). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 102(1), 207–214.
Crozet, P., Navarro, F. J., Willmund, F., Lavaud, J., Beyly-Adriano, A., Billon, E., ... & Lemaire, S. D. (2018). Birth of a photosynthetic chassis: A MoClo toolkit enabling synthetic biology in the microalga Chlamydomonas reinhardtii. ACS Synthetic Biology, 7(9), 2074–2086.
Cuellar-Bermudez, S. P., Garcia-Perez, J. S., Rittmann, B. E., & Parra-Saldivar, R. (2015). Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. Journal of Cleaner Production, 98, 53–65.
Davis, R., Markham, J., Kinchin, C., Grundl, N., Tan, E. C., & Humbird, D. (2016). Process design and economics for the production of algal biomass: algal biomass production in open pond systems and processing through dewatering for downstream conversion. National Renewable Energy Laboratory.
Delattre, C., Pierre, G., Laroche, C., & Michaud, P. (2016). Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology Advances, 34(7), 1159–1179.
Ducat, D. C., Way, J. C., & Silver, P. A. (2011). Engineering cyanobacteria to generate high-value products. Trends in Biotechnology, 29(2), 95–103.
Fernández, I., Acién, F. G., Berenguel, M., & Guzmán, J. L. (2011). First principles model based control of a tubular photobioreactor for microalgae production. IFAC Proceedings Volumes, 44(1), 14235–14240.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374), 237–240.
Gimpel, J. A., Henríquez, V., & Mayfield, S. P. (2015). In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Frontiers in Microbiology, 6, 1376.
Gimpel, J. A., Nour-Eldin, H. H., Scranton, M. A., Li, D., & Mayfield, S. P. (2016). Refactoring the six-gene photosystem II core in the chloroplast of the green algae Chlamydomonas reinhardtii. ACS Synthetic Biology, 5(7), 589–596.
Gong, M., & Bassi, A. (2016). Carotenoids from microalgae: A review of recent developments. Biotechnology Advances, 34(8), 1396–1412.
Guedes, A. C., Amaro, H. M., & Malcata, F. X. (2011). Microalgae as sources of high added-value compounds—a brief review of recent work. Biotechnology Progress, 27(3), 597–613.
Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278.
Huang, J., Li, Y., Wan, M., Yan, Y., Feng, F., Qu, X., ... & Li, Y. (2014). Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient. Bioresource Technology, 159, 8–16.
Jonker, J. G. G., & Faaij, A. P. C. (2013). Techno-economic assessment of microalgae as feedstock for renewable bio-energy production. Applied Energy, 102, 461–475.
Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6, 52–63.
Lee, Y. K. (2001). Microalgal mass culture systems and methods: Their limitation and potential. Journal of Applied Phycology, 13(4), 307–315.
Liew, W. H., Hassim, M. H., & Ng, D. K. S. (2014). Review of evolution, technology and sustainability assessments of biofuel production. Journal of Cleaner Production, 71, 11–29.
Lorenz, R. T., & Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 18(4), 160–167.
Mayfield, S. P., & Golden, S. S. (2015). Photosynthetic bio-manufacturing: Food, fuel, and medicine for the 21st century. F1000Research, 4, F1000 Faculty Rev-89.
Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597.
Nielsen, J., & Keasling, J. D. (2016). Engineering cellular metabolism. Cell, 164(6), 1185–1197.
Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17–25.
Posten, C. (2009). Design principles of photo-bioreactors for cultivation of microalgae. Engineering in Life Sciences, 9(3), 165–177.
Pulz, O. (2001). Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57(3), 287–293.
Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4), 486–501.
Ríos, S. D., Torres, C. M., Torras, C., Salvadó, J., Mateo-Sanz, J. M., & Jiménez, L. (2013). Microalgae-based biorefinery: Economic analysis of a conceptual design. Bioresource Technology, 129, 288–295.
Rosales-Mendoza, S., García-Silva, I., González-Ortega, O., Sandoval-Vargas, J. M., Malla, A., & Vimolmangkang, S. (2020). The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Current Pharmaceutical Biotechnology, 21(14), 1437–1453.
Satyanarayana, T., Littlechild, J., & Kawarabayasi, Y. (Eds.). (2013). Thermophilic microbes in environmental and industrial biotechnology. Springer.
Shah, M. M., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Frontiers in Plant Science, 7, 531.
Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (1998). A look back at the US Department of Energy's aquatic species program: biodiesel from algae. National Renewable Energy Laboratory.
Shin, S. E., Lim, J. M., Koh, H. G., Kim, E. K., Kang, N. K., Jeon, S., ... & Kwon, J. H. (2016). CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific Reports, 6(1), 27810.
Slegers, P. M., Lösing, M. B., Wijffels, R. H., van Straten, G., & van Boxtel, A. J. (2013). Scenario evaluation of open pond microalgae production. Algal Research, 2(4), 358–368.
Specht, E. A., & Mayfield, S. P. (2014). Algae-based oral recombinant vaccines. Frontiers in Microbiology, 5, 60.
Stanbury, P. F., Whitaker, A., & Hall, S. J. (2016). Principles of Fermentation Technology (3rd ed.). Butterworth-Heinemann.
Vanthoor-Koopmans, M., Wijffels, R. H., Barbosa, M. J., & Eppink, M. H. (2013). Biorefinery of microalgae for food and fuel. Bioresource Technology, 135, 142–149.
Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79(5), 707–718.
Wijffels, R. H., & Barbosa, M. J. (2010). An outlook on microalgal biofuels. Science, 329(5993), 796–799.
Zhu, L. (2015). Biorefinery as a promising approach to promote microalgae industry: An innovative framework. Renewable and Sustainable Energy Reviews, 41, 1376–1384.
