The Green and the Invisible: Forging a Synergistic Future for Microalgae

2 in Microbial Biotechnology

- 3 Mahdi Sadati*1'2
- 4 1) CEO & Co-Founder of AlgoTech Startup Company
- 5 2) Department of Microbiology, Islamic Azad University, Tehran-North Branch, Tehran-Iran.
- *) Correspondent E-mail: mahdi.sadati09@proton.me

7

30

- 8 For decades, the engine of microbial biotechnology has been powered by heterotrophic
- 9 workhorses—Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae—engineered to
- 10 convert refined sugar feedstocks into a vast array of chemicals, fuels, and therapeutics (Nielsen
- 41 & Keasling, 2016; Adrio & Demain, 2014). While this model has been immensely successful, its
- 12 limitations are increasingly apparent: it is tethered to agricultural commodities, contributing to
- the "food versus fuel" dilemma and carrying a significant carbon footprint from crop cultivation
- and processing (Naik et al., 2010; Liew et al., 2014).
- 15 Concurrently, a quiet revolution has been advancing in the realm of microalgae. These
- photosynthetic microorganisms harness solar energy to drive the conversion of CO₂ into
- biomass, offering a pathway to decarbonize biomanufacturing (Field et al., 1998; Wang et al.,
- 18 2008). Despite both disciplines operating under the broad umbrella of microbiology, microalgal
- 19 biotechnology has often progressed in parallel, with distinct scientific communities and technical
- 20 foci (Wijffels & Barbosa, 2010). This siloing has impeded the flow of knowledge and delayed
- 21 the full exploitation of algal potential. This review argues that the deliberate and strategic
- 22 integration of microalgae science into the mainstream of microbial biotechnology is not merely
- an option but a critical evolution for building a sustainable, resilient, and circular bio-based
- economy (Chisti, 2012; Zhu, 2015). We will explore the foundational synergies, present
- evidence from commercial and nascent applications, and provide a critical analysis of the
- 26 missing links that must be forged to realize this integrated future.

27 The Foundational Synergy: Why Microalgae Are Indispensable

- 28 Microalgae are unicellular photosynthetic factories whose value proposition to biotechnology is
- 29 multi-faceted and fundamentally complementary to existing platforms.

Sustainable Feedstock Independence and Carbon Valorization

- 31 The most profound advantage of microalgae is their autotrophy. They utilize CO₂ (including
- 32 potent point-source emissions from industrial flue gas) as a carbon source and light as their
- energy input, completely decoupling bioproduction from arable land and food systems (Brennan
- 34 & Owende, 2010; Wang et al., 2008). This aligns with circular bioeconomy principles,
- transforming a waste product and a ubiquitous energy source into valuable biomass (Zhu, 2015).
- 36 Life cycle assessments (LCAs) consistently show the potential for algal systems to achieve

- 37 significantly lower net carbon emissions compared to first-generation biofuel crops and even
- some heterotrophic microbial processes (Clarens et al., 2010; Jonker & Faaij, 2013).

39 A Unique and Valuable Biochemical Portfolio

- 40 Beyond their metabolic mode, microalgae are renowned for synthesizing a suite of complex
- 41 molecules that are challenging, expensive, or impossible to produce at scale in heterotrophic
- 42 microbes (Guedes et al., 2011). This includes:
- 43• Essential Lipids: Long-chain omega-3 polyunsaturated fatty acids (PUFAs) like
- docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), crucial for nutraceuticals and
- offering a sustainable, scalable alternative to finite fish oil stocks (Adarme-Vega et al., 2012).
- 46• High-Potency Pigments: Carotenoids such as astaxanthin (a powerful antioxidant) and beta-
- 47 carotene, along with phycobiliproteins like phycocyanin, with vibrant applications in food,
- 48 cosmetics, and health supplements (Gong & Bassi, 2016).
- 49• Specialty Biopolymers: Exopolysaccharides with unique rheological properties for biomaterials,
- 50 cosmetics, and as natural bioflocculants (Delattre et al., 2016).
- 51. Bioactive Compounds and Enzymes: Novel peptides with demonstrated pharmaceutical
- 52 potential and robust extremozymes stable under the high-light, high-oxygen conditions of
- photobioreactors (Satyanarayana et al., 2013).

54 Integrated Ecosystem Services as a Unit Operation

- A defining feature of microalgal cultivation is that the manufacturing process itself can be
- designed to deliver environmental services, creating a "bioremediation-coupled production"
- 57 model (Christenson & Sims, 2011). They are highly effective in tertiary wastewater treatment,
- assimilating nitrogen, phosphorus, and sequestering heavy metals (Pittman et al., 2011). When
- 59 combined with carbon capture from flue gas, this enables the design of bioprocesses with a net-
- 60 negative environmental impact, where the cost of production is partially offset by the value of
- remediation services (Cuellar-Bermudez et al., 2015).

62 Case Reports: From Proof-of-Concept to Industrial Reality

63 Case Report 1: The Astaxanthin Success Story – A Blueprint for Two-Stage

- 64 **Photoproduction**
- 65• The Challenge: The market required a natural, high-potency source of the super-antioxidant
- astaxanthin, superior to synthetic versions for aquaculture and human nutraceuticals (Capelli et
- 67 al., 2013).
- 68• The Algal Solution: The green microalga *Haematococcus pluvialis* was identified for its
- remarkable capacity to accumulate astaxanthin to over 4% of its dry weight under stress (Shah et
- al., 2016). Companies commercialized this by developing sophisticated two-stage cultivation
- systems: first, a "green stage" in closed photobioreactors under optimal growth conditions to
- maximize biomass; second, a "red stage" where nutrients are restricted and light intensity is
- 73 increased to trigger massive astaxanthin biosynthesis (Lorenz & Cysewski, 2000).
- 74• Convergence with Microbial Biotech: This process is a direct phototrophic analogue to a two-
- stage microbial fermentation, a well-established strategy for separating growth from production

- in heterotrophs (Lee, 2001). The principles of sterile technique, growth kinetics, and nutrient
- 77 media optimization, honed in conventional fermentation, were directly applicable and critical for
- achieving commercial-scale, contamination-free production (Carvalho et al., 2011).

Case Report 2: The Biofuel Endeavor and the Pivot to the Biorefinery

- 80• The Challenge: To develop a scalable, carbon-neutral, and economically viable biofuel to
- 81 displace fossil fuels (Chisti, 2007).

79

- 82• The Algal Solution: Large-scale R&D programs screened and developed oleaginous strains
- 83 (e.g., Nannochloropsis, Chlorella) and demonstrated cultivation using flue gas, directly
- converting CO₂ into triglycerides for biodiesel (Sheehan et al., 1998).
- 85• Convergence and Strategic Pivot: The standalone economics of algal biodiesel proved
- section challenging due to cultivation and dewatering costs (Davis et al., 2016). This effort, however,
- yielded a crucial insight: the path to viability lies in valorizing the entire biomass. The lipid-
- 88 extracted algal residue is rich in proteins, carbohydrates, and other compounds, useful for animal
- 89 feed, bioplastics, and chemicals (Koller et al., 2014). This cemented the "biorefinery" model in
- algal biotechnology—a core principle in industrial biotechnology where every biomass fraction
- 91 is utilized to create a spectrum of products, improving overall economics and sustainability
- 92 (Clark & Deswarte, 2015).

93 Case Report 3: Microalgae as Eukaryotic Cell Factories for Pharmaceuticals

- 94• The Challenge: The need for a scalable, cost-effective, and safe eukaryotic expression system
- 95 for complex therapeutic proteins (e.g., antibodies, vaccines) that require precise post-
- 96 translational modifications (Rosales-Mendoza et al., 2020).
- 97• The Algal Solution: The model alga *Chlamydomonas reinhardtii* has been engineered to
- 98 produce functional human proteins in its chloroplast—a compartment that offers transgene
- ontainment and avoids gene silencing (Specht & Mayfield, 2014). Its generally recognized as
- safe (GRAS) status, rapid growth, and eukaryotic folding machinery position it as a promising
- "green cell factory" (Gimpel et al., 2015).
- 102• Convergence with Microbial Biotech: This application is a direct translation of genetic
- toolboxes from mainstream synthetic biology. The challenge and opportunity lie in adapting
- 104 CRISPR-Cas9 and synthetic gene circuits for algal chloroplasts and nuclei, requiring deep
- 105 collaboration between algal geneticists and microbial synthetic biologists (Hsu et al., 2014;
- 106 Gimpel et al., 2016).

107 Filling the Missing Links: A Critical Discussion on Disciplinary Integration

- 108 The potential is clear, but full integration requires overcoming significant, interconnected
- 109 challenges.

110 Process Engineering: From Artisanal Practice to Predictive Scale-Up

- Heterotrophic fermentation benefits from a century of chemical engineering, with standardized
- metrics (e.g., yield on substrate) and predictable scale-up in stirred-tank reactors (Stanbury et al.,
- 2016). Microalgal cultivation, however, is a multi-physics problem complicated by light
- delivery. The proliferation of system designs—from open ponds to complex photobioreactors—

- creates uncertainty (Posten, 2009). **The Path Forward:** The field must adopt rigorous
- 116 fermentation-style metrics, including biomass yield on photons (Blanken et al., 2016). The
- development of "smart" photobioreactors using computational fluid dynamics for design and
- advanced process control for operation is essential to achieve the reliability expected of
- industrial unit operations (Fernández et al., 2011; Huang et al., 2014).

120 The Genetic Toolbox Disparity: From Prototype to Platform

- While E. coli and yeast have modular genetic parts registries, toolboxes for most microalgae
- remain species-specific and inefficient, hindered by random integration and gene silencing
- 123 (Radakovits et al., 2010). **The Path Forward:** A coordinated, community-wide effort is needed
- to build standardized genetic "Parts Registries" for key algal chassis (Crozet et al., 2018). This
- must be coupled with the adaptation of high-efficiency CRISPR tools and the development of
- genome-scale metabolic models to guide rational engineering (Shin et al., 2016).

Cultivating an Interdisciplinary Workforce and Validating Economics

- The workforce is often siloed; biochemical engineers may lack training in photobiophysics,
- while phycologists may be less familiar with downstream processing and techno-economic
- analysis (TEA; Pulz, 2001; Ríos et al., 2013). **The Path Forward:** Academic programs must
- create hybrid curricula that blend phycology with biochemical engineering and synthetic biology
- 132 (Mayfield & Golden, 2015). Furthermore, TEA and LCA must be integrated from the outset of
- 133 R&D to guide the development of processes that are not only scientifically sound but also
- economically viable and environmentally sustainable (Jonker & Faaij, 2013; Collet et al., 2011).

135 Navigating the Regulatory and Social Landscape

127

141

- As engineered microalgae near commercialization, navigating unclear regulatory pathways for
- genetically modified (GM) photosynthetic organisms and addressing public perception concerns
- become critical. The Path Forward: Proactive engagement with regulators to develop science-
- based risk assessments and transparent public communication about the benefits and controls of
- algal biotechnology are essential for social license to operate.

Conclusion and Future Perspectives

- Microalgae science is not a competitor but a vital partner to traditional microbial biotechnology.
- 143 Its photosynthetic platform addresses critical limitations of feedstock sustainability and
- environmental impact. The case studies demonstrate that the principles of microbial
- bioprocessing are not only transferable but also highly effective when applied to microalgae.
- The future lies in a fully integrated approach: using synthetic biology to create next-generation
- algal chassis (Ducat et al., 2011), leveraging advanced bioprocess engineering for predictable
- scale-up (Slegers et al., 2013), and implementing holistic biorefinery models to maximize value
- 149 (Vanthoor-Koopmans et al., 2013). By actively bridging the gaps in process engineering, genetic
- tool development, cross-disciplinary education, and regulatory science, we can fully unlock the
- potential of these microscopic powerhouses. This concerted effort will be instrumental in
- addressing pressing global challenges in health, energy, and climate, ultimately forging a new,
- sustainable, and productive paradigm for the entire biotechnology sector. The green and the

- invisible must not merely coexist; they must coalesce to build the bio-manufacturing landscape
- of the future.

156

157

- References
- 158 Adarme-Vega, T. C., Lim, D. K., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012).
- Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid
- production. *Microbial Cell Factories*, 11(1), 96.
- Adrio, J. L., & Demain, A. L. (2014). Microbial enzymes: tools for biotechnological
- 162 processes. *Biomolecules*, *4*(1), 117–139.
- Blanken, W., Postma, P. R., de Winter, L., Wijffels, R. H., & Janssen, M. (2016). Predicting
- microalgae growth. *Algal Research*, 14, 28–38.
- Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for
- production, processing, and extractions of biofuels and co-products. Renewable and Sustainable
- 167 Energy Reviews, 14(2), 557–577.
- 168 Capelli, B., Bagchi, D., & Cysewski, G. R. (2013). Synthetic astaxanthin is significantly inferior
- to algal-based astaxanthin as an antioxidant and may not be suitable for human
- 170 consumption. *Natural Products Journal*, 3(2).
- 171 Carvalho, A. P., Silva, S. O., Baptista, J. M., & Malcata, F. X. (2011). Light requirements in
- microalgal photobioreactors: an overview of biophotonic aspects. *Applied Microbiology and*
- 173 Biotechnology, 89(5), 1275–1288.
- 174 Chisti, Y. (2007). Biodiesel from microalgae. *Biotechnology Advances*, 25(3), 294–306.
- 175 Chisti, Y. (2012). Are algae a viable source of fuel? *Microbial Biotechnology*, 5(4), 443–445.
- 176 Christenson, L., & Sims, R. (2011). Production and harvesting of microalgae for wastewater
- treatment, biofuels, and bioproducts. *Biotechnology Advances*, 29(6), 686–702.
- 178 Clarens, A. F., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2010). Environmental life
- cycle comparison of algae to other bioenergy feedstocks. *Environmental Science & Technology*,
- 180 *44*(5), 1813–1819.
- 181 Clark, J. H., & Deswarte, F. E. (2015). The biorefinery concept—an integrated approach.
- In *Introduction to chemicals from biomass* (2nd ed.). John Wiley & Sons.
- 183 Collet, P., Hélias Arnaud, L., Lardon, L., Ras, M., Goy, R. A., & Steyer, J. P. (2011). Life-cycle
- assessment of microalgae culture coupled to biogas production. *Bioresource Technology*, 102(1),
- 185 207–214.

- 186 Crozet, P., Navarro, F. J., Willmund, F., Lavaud, J., Beyly-Adriano, A., Billon, E., ... & Lemaire,
- S. D. (2018). Birth of a photosynthetic chassis: A MoClo toolkit enabling synthetic biology in
- the microalga *Chlamydomonas reinhardtii*. ACS Synthetic Biology, 7(9), 2074–2086.
- Cuellar-Bermudez, S. P., Garcia-Perez, J. S., Rittmann, B. E., & Parra-Saldivar, R. (2015).
- 190 Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third
- 191 generation biofuels. *Journal of Cleaner Production*, 98, 53–65.
- Davis, R., Markham, J., Kinchin, C., Grundl, N., Tan, E. C., & Humbird, D. (2016). *Process*
- design and economics for the production of algal biomass: algal biomass production in open
- 194 pond systems and processing through dewatering for downstream conversion. National
- 195 Renewable Energy Laboratory.
- Delattre, C., Pierre, G., Laroche, C., & Michaud, P. (2016). Production, extraction and
- 197 characterization of microalgal and cyanobacterial exopolysaccharides. *Biotechnology Advances*,
- 198 *34*(7), 1159–1179.
- Ducat, D. C., Way, J. C., & Silver, P. A. (2011). Engineering cyanobacteria to generate high-
- value products. *Trends in Biotechnology*, 29(2), 95–103.
- Fernández, I., Acién, F. G., Berenguel, M., & Guzmán, J. L. (2011). First principles model based
- 202 control of a tubular photobioreactor for microalgae production. IFAC Proceedings Volumes,
- 203 44(1), 14235–14240.
- Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of
- the biosphere: integrating terrestrial and oceanic components. *Science*, 281(5374), 237–240.
- Gimpel, J. A., Henríquez, V., & Mayfield, S. P. (2015). In metabolic engineering of eukaryotic
- 207 microalgae: potential and challenges come with great diversity. Frontiers in Microbiology, 6,
- 208 1376.
- 209 Gimpel, J. A., Nour-Eldin, H. H., Scranton, M. A., Li, D., & Mayfield, S. P. (2016). Refactoring
- 210 the six-gene photosystem II core in the chloroplast of the green algae *Chlamydomonas*
- reinhardtii. ACS Synthetic Biology, 5(7), 589–596.
- 212 Gong, M., & Bassi, A. (2016). Carotenoids from microalgae: A review of recent
- developments. *Biotechnology Advances*, 34(8), 1396–1412.
- Guedes, A. C., Amaro, H. M., & Malcata, F. X. (2011). Microalgae as sources of high added-
- value compounds—a brief review of recent work. *Biotechnology Progress*, 27(3), 597–613.
- 216 Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9
- 217 for genome engineering. *Cell*, *157*(6), 1262–1278.
- 218 Huang, J., Li, Y., Wan, M., Yan, Y., Feng, F., Qu, X., ... & Li, Y. (2014). Novel flat-plate
- 219 photobioreactors for microalgae cultivation with special mixers to promote mixing along the
- 220 light gradient. *Bioresource Technology*, 159, 8–16.

- Jonker, J. G. G., & Faaij, A. P. C. (2013). Techno-economic assessment of microalgae as
- feedstock for renewable bio-energy production. *Applied Energy*, 102, 461–475.
- Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for
- valued products. *Algal Research*, 6, 52–63.
- Lee, Y. K. (2001). Microalgal mass culture systems and methods: Their limitation and
- potential. Journal of Applied Phycology, 13(4), 307–315.
- Liew, W. H., Hassim, M. H., & Ng, D. K. S. (2014). Review of evolution, technology and
- sustainability assessments of biofuel production. *Journal of Cleaner Production*, 71, 11–29.
- Lorenz, R. T., & Cysewski, G. R. (2000). Commercial potential for *Haematococcus* microalgae
- as a natural source of astaxanthin. Trends in Biotechnology, 18(4), 160–167.
- Mayfield, S. P., & Golden, S. S. (2015). Photosynthetic bio-manufacturing: Food, fuel, and
- medicine for the 21st century. *F1000Research*, 4, F1000 Faculty Rev-89.
- Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second
- 234 generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews,
- 235 *14*(2), 578–597.
- Nielsen, J., & Keasling, J. D. (2016). Engineering cellular metabolism. *Cell*, 164(6), 1185–1197.
- Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel
- production using wastewater resources. *Bioresource Technology*, 102(1), 17–25.
- Posten, C. (2009). Design principles of photo-bioreactors for cultivation of
- 240 microalgae. Engineering in Life Sciences, 9(3), 165–177.
- Pulz, O. (2001). Photobioreactors: production systems for phototrophic microorganisms. *Applied*
- 242 *Microbiology and Biotechnology*, 57(3), 287–293.
- 243 Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of
- algae for enhanced biofuel production. *Eukaryotic Cell*, 9(4), 486–501.
- Ríos, S. D., Torres, C. M., Torras, C., Salvadó, J., Mateo-Sanz, J. M., & Jiménez, L. (2013).
- 246 Microalgae-based biorefinery: Economic analysis of a conceptual design. *Bioresource*
- 247 Technology, 129, 288–295.
- Rosales-Mendoza, S., García-Silva, I., González-Ortega, O., Sandoval-Vargas, J. M., Malla, A.,
- 249 & Vimolmangkang, S. (2020). The potential of microalgae for the production of bioactive
- 250 molecules of pharmaceutical interest. Current Pharmaceutical Biotechnology, 21(14), 1437–
- **251** 1453.
- Satyanarayana, T., Littlechild, J., & Kawarabayasi, Y. (Eds.). (2013). Thermophilic microbes in
- *environmental and industrial biotechnology*. Springer.

- Shah, M. M., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green
- 255 microalga *Haematococcus pluvialis*: from single cell to high value commercial
- products. Frontiers in Plant Science, 7, 531.
- Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (1998). A look back at the US
- 258 Department of Energy's aquatic species program: biodiesel from algae. National Renewable
- 259 Energy Laboratory.
- 260 Shin, S. E., Lim, J. M., Koh, H. G., Kim, E. K., Kang, N. K., Jeon, S., ... & Kwon, J. H. (2016).
- 261 CRISPR/Cas9-induced knockout and knock-in mutations in *Chlamydomonas*
- *reinhardtii. Scientific Reports, 6*(1), 27810.
- Slegers, P. M., Lösing, M. B., Wijffels, R. H., van Straten, G., & van Boxtel, A. J. (2013).
- Scenario evaluation of open pond microalgae production. *Algal Research*, 2(4), 358–368.
- Specht, E. A., & Mayfield, S. P. (2014). Algae-based oral recombinant vaccines. Frontiers in
- 266 *Microbiology*, *5*, 60.
- Stanbury, P. F., Whitaker, A., & Hall, S. J. (2016). *Principles of Fermentation Technology* (3rd
- ed.). Butterworth-Heinemann.
- Vanthoor-Koopmans, M., Wijffels, R. H., Barbosa, M. J., & Eppink, M. H. (2013). Biorefinery
- of microalgae for food and fuel. *Bioresource Technology*, 135, 142–149.
- Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). CO2 bio-mitigation using microalgae. Applied
- 272 *Microbiology and Biotechnology*, 79(5), 707–718.
- Wijffels, R. H., & Barbosa, M. J. (2010). An outlook on microalgal biofuels. *Science*, 329(5993),
- 274 796–799.
- Zhu, L. (2015). Biorefinery as a promising approach to promote microalgae industry: An
- innovative framework. Renewable and Sustainable Energy Reviews, 41, 1376–1384.