مروری بر ارتباط وسایل نقلیه هوشمند خودمختار با تعاملات بینایی انسان و کامپیوتر
الموضوعات : Mechatronic Systems
علی رحیمی قاسم آبادی
1
,
محمدرضا ذبیحی
2
,
فرزاد چراغپور سموتی
3
1 - دانش آموخته مقطع کارشناسی ارشد، گروه مهندسی مکانیک- گرایش طراحی کاربردی، آزمایشگاه تحقیقاتی سامانه های مکانیکی هوشمند، واحد علوم و فناوری پردیس، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشجوی مقطع کارشناسی ارشد، گروه مهندسی مکانیک آزمایشگاه تحقیقاتی سامانه های مکانیکی هوشمند, واحد علوم و فناوری پردیس, دانشگاه آزاد اسلامی, تهران, ایران
3 - استادیار، گروه مهندسی مکانیک، واحد پردیس، دانشگاه آزاد اسلامی، تهران، ایران
الکلمات المفتاحية: هوش مصنوعی, حمل و نقل هوشمند, رابط مغز و کامپیوتر (BCI), ابزار کمکی, تعاملات بینایی انسان و کامپیوتر .,
ملخص المقالة :
وسایل نقلیه هوشمند و خودمختار, یک ابزارهوشمند حمل و نقل جهت رفاه حال سالمندان، بیماران و افرادی که دارای محدودیت حرکتی هستند میباشد. با استفاده از تکنولوژی های مختلف از جمله رابطهای ارتباطی مغز و رایانهها با ماشینها متصل میکنند. جهت دریافت اطلاعات محیط اطراف و بررسی داده ها توسط رایانه ی تعبیه شده و تصمیم گیری با استفاده از هوش مصنوعی و ارسال فرمان های متناسب به سنسور ها, به منظور جهت یابی, تشخیص موانع ثابت و متحرک, فرد دچار مشکل حرکتی را از داشتن همراه و یا کنترل دستی وسیله نقلیه بی نیاز میکند. مصرف کننده تمام فرمانها و تنظیمات مورد نظر را شخصی سازی میکند. مسیر یابی ایمن, موثر و دقیق کاملا توسط محاسبات ابزار هوش مصنوعی کامپیوتری تعبیه شده و ارسال فرامین به سنسور ها انجام میشود.
[1] M. a. N. M. (. P. R. 9. (. 7. Lebedev, "Brain-machine interfaces: from basic science to europrostheses and neurorehabilitation.," Physiological reviews, vol. 97, no. American Physiological Society Bethesda, MD, pp. 767-837, 2017.
[2] R. a. V. A. Ramadan, "Brain computer interface: control signals review," Neurocomputing, vol. 223, no. Elsevier, pp. 26-44, 2017.
[3] S. K. C. M. T. e. a. Makeig, "Evolving signal processing for brain-computer interfaces. Proceedings of the IEEE 100 (Special Centennial Issue)," Proceedings of the IEEE, vol. 100, no. IEEE, p. 1567–1584, 2012.
[4] F. B. L. C. A. e. a. Lotte, "A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. Journal of Neural Engineering," Journal of neural engineering, vol. 15, no. iOP Publishing, p. 031005, 2018.
[5] Y. B. H. A. I. e. a. Roy, "Deep learning-based electroencephalography analysis: a systematic review. Journal of Neural Engineering," Journal of neural engineering, vol. 16, no. IOP Publishing, p. 051001, 2019.
[6] L. a. F. T. Trambaiolli, "Hybrid brain-computer interfaces for wheelchair control: a review of existing solutions, their advantages and open challenges. In: Smart Wheelchairs and Brain-Computer Interfaces," Smart Wheelchairs and Brain-Computer Interfaces, no. Elsevier, p. 229–256, 2018.
[7] B. a. N. C. Allison, "Could anyone use a BCI?," Brain-computer interfaces: Applying our minds to human-computer interaction, no. Springer, p. 35–54, 2010.
[8] D. a. W. J. McFarland, "Brain–computer interface use is a skill that user and system acquire together," PLoS biology, vol. 16, no. Public Library of Science San Francisco, CA USA, p. e2006719, 2018.
[9] S. a. M. J. Perdikis, "Brain-machine interfaces: a tale of two learners," Brain-machine interfaces: a tale of two learners, vol. 6, no. IEEE, pp. 2333-942X, 2020.
[10] I. R. A. B. M. e. a. Volosyak, "Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces," Biomedical Physics & Engineering
Express, vol. 6, no. IOP Publishing, p. 035034, 2020.
[11] J. a. W. E. Wolpaw, "Brain-computer interfaces: something new under the sun," Brain-computer interfaces: principles and practice, vol. 14, no. Oxford University Press Oxford, 2012.
[12] H. (. Berger, "Über das elektroenkephalogramm des menschen," Archiv für psychiatrie und nervenkrankheiten, pp. 527-570, 1929.
[13] F. C. M. L. A. e. a. Lotte, "A review of classification algorithms for EEG-based brain–computer interfaces," Journal of neural engineering, vol. 4, no. IOP Publishing, p. R1, 2007.
[14] M. Brazier Pioneers in the discovery of evoked potentials Electroencephalogr Clin Neurophysiol, 59 (1984), pp. 2-8
[15] Kawala-Sterniuk, N. Browarska, A. Al-Bakri, M. Pelc, J. Zygarlicki, M. Sidikova, et al. Summary of over fifty years with brain-computer interfaces-A review Brain Sci, 11 (1) (2021), p. 43, 10.3390/brainsci11010043
[16] D. Silverman The rationale and history of the 10-20 system of the international federation Am J EEG Technol, 3 (1) (1964)
[17] A. B. M. S. P. e. a. Rezeika, "Brain–computer interface spellers: A review," Brain sciences, vol. 8, no. MDPI, p. 57, 2018.
[18] C. a. P. M. Marquez-Chin, "Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review," Biomedical engineering online, vol. 19, no. Springer, p. 1–25, 2020.
[19] H. G. R. a. F. T. Banville, "Mental task evaluation for hybrid NIRS-EEG brain-computer interfaces," Computational intelligence and neuroscience, no. Hindawi Limited, 2017.
[20] I. G. C. a. G. A. (. Volosyak, "Toward BCI Wizard-best BCI approach for each user," in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010.
[21] I. a. S. M. Volosyak, "Asynchronous Control of a Spherical Robot by Means of SSVEP-based Brain-Computer Interface," in 2019 E-Health and Bioengineering Conference, 2019.
[22] P. R. A. a. V. I. Stawicki, "Effects of Training on BCI Accuracy in SSMVEP-based BCI," in Advances in Computational Intelligence: 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part II 16, 2021.
[23] C. A. B. N. A. a. C. G. Mühl, "A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges," Brain-Computer Interfaces, vol. 1, no. Taylor & Francis, pp. 66-84, 2014.
[24] S. a. C. G. Ehrlich, "Human-agent co-adaptation using error-related potentials," Journal of neural engineering, vol. 15, no. IOP Publishing, p. 066014, 2018.
[25] F. R. I. R. R. e. a. Dehais, "A pBCI to predict attentional error before it happens in real flight conditions," in 2019 ieee international conference on systems, man and cybernetics (smc), 2019.
[26] R. S. A. a. M. J. Chavarriaga, "Errare machinale est: the use of error-related potentials in brain-machine interfaces," Frontiers in neuroscience, vol. 8, no. Frontiers, p. 86996, 2014.
[27] M. a. d. S. V. Mousavi, "Spatio-temporal analysis of error-related brain activity in active and passive brain–computer interfaces," Brain-computer interfaces, vol. 6, no. Taylor & Francis, p. 118–127, 2019.
[28] NIRS-measured prefrontal cortex activity in neuroergonomics: strengths and weaknesses. Frontiers in Human Neuroscience 7: 583. 20 2 Brain–Computer Interfaces: Recent Advances, Challenges, and Future, 2013.
[29] G. A. B. B. G. e. a. Pfurt-scheller, "The hybrid BCI," Frontiers in neuroscience, vol. 4, no. Frontiers, p. 1283, 2010.
[30] NBC News learn. (2020, May 5). Mysteries of the Brain: Brain-Computer Interface[Video]. YouTube. https://www.youtube.com/watch?v=p1XQ4uxqxZI
[31] T. G. M. P. S. a. C. T. Falk, "Taking NIRS-BCIs outside the lab: towards achieving robustness against environment noise," IEEE Transactions on Neural Systems and Rehabilitation Engineering, no. IEEE, pp. 136-146, 2010.
[32] I. T. A. P. M. e. a. Albuquerque, "Wauc: a multi-modal database for mental workload assessment under physical activity," Frontiers in Neuroscience, vol. 14, no. Frontiers, p. 549524, 2020.
[33] A. R. J. P. J. e. a. Lopes, "A new hybrid motion planner: Applied in a brain-actuated robotic wheelchair," IEEE Robotics & Automation Magazine, vol. 23, no. IEEE, p. 82–93, 2016.
[34] L. a. F. T. Trambaiolli, "Hybrid brain–computer interfaces for wheelchair control: a review of existing solutions, their advantages and open challenges," Smart Wheelchairs and Brain-Computer Interfaces, no. Elsevier, pp. 229-256, 2018.
[35] B. B. E. Z. Q. e. a. Rebsamen, "Hybrid P300 and Mu-Beta brain computer interface to operate a brain controlled wheelchair," in Proceedings of the 2nd International Convention on Rehabilitation Engineering & Assistive Technology, 2008.
[36] H. L. Y. L. J. e. a. Wang, "An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface," Cognitive neurodynamics, vol. 8, p. 399–409, 2014.
[37] C. S. R. P. F. e. a. .. Guger, "ssessing command-following and communication with vibro-tactile P300 brain-computer interface tools in patients with unresponsive wakefulness syndrome," Frontiers in neuroscience, vol. 12, no. Frontiers, p. 359448, 2018.
[38] Bin, G., Gao, X., Wang, Y., Li, Y., Hong, B., & Gao, S. (2011). A high-speed BCI based on code modulation VEP. Journal of neural engineering, 8(2), 025015.
[39] Wang, Z., Healy, G., Smeaton, A. F., & Ward, T. E. (2018). A review of feature extraction and classification algorithms for image RSVP based BCI. Signal processing and machine learning for brain-machine interfaces, 243-270.
[40] L. T. A. a. F. T. .. Trambaiolli, "Affective neurofeedback under naturalistic conditions: a mini-review of current achievements and open challenges," Frontiers in Neuroergonomics, vol. 2, no. Frontiers Media SA, 2021.
[41] Nirmala Devi, A., & Rathna, R. (2024). EEG data based human attention recognition using various machine learning techniques: a review. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 11(7), 2299096.
[42] Ackermann, S., & Rasch, B. (2014). Differential effects of non-REM and REM sleep on memory consolidation. Current neurology and neuroscience reports, 14, 1-10.
[43] Peng, Y., Wong, C. M., Wang, Z., Rosa, A. C., Wang, H. T., & Wan, F. (2021). Fatigue detection in SSVEP-BCIs based on wavelet entropy of EEG. Ieee Access, 9, 114905-114913.
[44] Rimbert, S., Riff, P., Gayraud, N., Schmartz, D., & Bougrain, L. (2019). Median nerve stimulation based BCI: a new approach to detect intraoperative awareness during general anesthesia. Frontiers in Neuroscience, 13, 622.
[45] R. e. a. Gupta, "Multimodal physiological quality-of-experience assessment of text-to-speech systems," IEEE Journal of Selected Topics in Signal Processing, no. IEEE, pp. 22-36, 2016.
[46] Wikipedia contributors. (2024). Functional near-infrared spectroscopy. In Wikipedia. Retrieved November17,2024,from https://en.wikipedia.org/wiki/Functional_near infrared_spectroscopy
[47] Y. L. C. W. H. e. a. Xing, "Driver lane change intention inference for intelligent vehicles: Framework, survey, and challenges," IEEE Transactions on Vehicular Technology, vol. 68, no. IEEE, pp. 4377-4390, 2019.
[48] T. B. F. R. P. e. a. Von Landesberger, "MobilityGraphs: Visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering," IEEE transactions on visualization and computer graphics, vol. 22, no. IEEE, pp. 11-20, 2015.
[49] L. Li and F.-Y. Wang, Advanced motion control and sensing for intelligent vehicles, Springer Science & Business Media, 2007. [50] B. Shneiderman, "Human-centered artificial intelligence: Reliable, safe & trustworthy," International Journal of Human–Computer Interaction, vol. 36, no. Taylor & Francis, pp. 495-504, 2020.
[51] S. B. A. N. B. a. H. J.-H. (. Gedicke, "Zoomless maps: external labeling methods for the interactive exploration of dense point sets at a fixed map scale," IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. IEEE, pp. 1247-1256, 2020.
[52] C. T. M. a. K. J. Ackad, "Skeletons and silhouettes: Comparing user representations at a gesture-based large display," in Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 2016.
[53] Z. a. L. S. Kang, "An eye movement analysis algorithm for a multielement target tracking task: maximum transition-based agglomerative hierarchical clustering.," IEEE Transactions on Human-Machine Systems, vol. 45, no. IEEE Transactions on Human–Machine Systems 4, p. 13–24, 2015.
[54] C. K. Y. J. S. e. a. Lee, "A visual analytics system for exploring, monitoring, and forecasting road traffic congestion," IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. IEEE, p. 3133–3146, 2019.
[55] H. M. T. W. Z. a. D. Z. Bi, "A deep learning-based framework for intersectional traffic simulation and editing," IEEE Transactions on Visualization and Computer Graphics, no. IEEE, p. 2335–2348, 2019.
[56] K. S. D. W. J. e. a. Wongsuphasawat, "Visualizing dataflow graphs of deep learning models in tensorflow," IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. IEEE, p. 1–12, 2017.
[57] Z. T. R. S. O. e. a. Wang, "CNN explainer: learning convolutional neural networks with interactive visualization," IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. IEEE, 2020.
