An Investigation of an Innovative Diagonal Brace-Brake Pad Friction Damper via Experimental and Numerical Methods
الموضوعات :
Mehdi Shalchi Tousi
1
,
Ata Hojatkashani
2
,
Leila Haji Najafi
3
,
Mohammadreza adibramezani
4
1 - Department of Civil Engineering, Islamic Azad University South Tehran Branch, Tehran, Iran
2 - Assistant Professor, Department of Civil Engineering, Islamic Azad University South Tehran Branch, Tehran, Iran; (corresponding author)
3 - Assistant Professor, Department of Civil and Environmental Engineering, of Technology, Tehran, Iran
4 - Assistant Professor, Department of Civil Engineering, Islamic Azad University South Tehran Branch, Tehran, Iran
الکلمات المفتاحية: diagonal-braced frames, Seismic mitigation, Brake pad friction damper, Cyclic loading, Experimental examination, Numerical analysis, Response Modification Factor, Brace-friction damper structural system.,
ملخص المقالة :
Earthquakes represent a considerable hazard to braced steel frames, thereby underscoring the necessity for economically viable mitigation strategies. Braced steel frames are extensively employed in construction owing to their exceptional strength and rigidity. Nevertheless, their intrinsic stiffness may result in substantial damage during seismic occurrences. This investigation examines a potentially effective solution: brake pad friction dampers. A comprehensive experimental-numerical analysis is presented to evaluate their energy dissipation properties. An experimental assessment under cyclic loading is conducted to ascertain the performance of individual damper components. Finite element simulations employing ABAQUS and OPENSEES scrutinize the efficacy of such dampers when incorporated into diagonal brace braced frames subjected to seismic forces. This research endeavors to elucidate the seismic performance of brake pad friction dampers in diagonal braced, with an emphasis on their capacity to enhance seismic performance. The findings bear significant potential for the formulation of innovative and cost-efficient solutions for earthquake-resistant infrastructures. Furthermore, to augment the comprehension of seismic performance enhancement, a numerical study is performed to quantify the Response Modification Factor. The influence of the friction brake pad (FBP) on the R factor of brace-friction damper structural systems is analyzed through push-over assessment. Subsequent investigations will explore optimal damper design parameters and specifications, including a range of damper capacities.
1. Akay, A. 2002. “Acoustics of friction.” J. Acoust. Soc. Am., 111 (4): 1525–1548. https://doi.org/10.1121/1.1456514.
2. ASCE/SEI 41-13. 2014. Seismic Evaluation and Retrofit of Existing Buildings. Reston, VA: American Society of Civil Engineers.
3. Babaei, M., N. Taghaddosi, and N. Seraji. 2023. “Optimal Design of MR Dampers Using NSGA-II Algorithm.” J. Soft Comput. Civ. Eng., 7 (1): 72–92. Assistant Professor, Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan, Iran. https://doi.org/10.22115/scce.2022.347247.1466.
4. Balendra, T., E. L. Lim, and S. L. Lee. 1994. “Ductile knee braced frames with shear yielding knee for seismic resistant structures.” Eng. Struct., 16 (4): 263–269. https://doi.org/10.1016/0141-0296(94)90066-3.
5.Balendra, T., C. H. Yu, and F. L. Lee. 2001. “An economical structural system for wind and earthquake loads.” Eng. Struct., 23 (5): 491–501. https://doi.org/10.1016/S0141-0296(00)00061-4.
6.Bhaskararao, A. V., and R. S. Jangid. 2006. “Harmonic response of adjacent structures connected with a friction damper.” J. Sound Vib., 292 (3–5): 710–725. https://doi.org/10.1016/j.jsv.2005.08.029.
7.BS EN 14399-3:2015.2015 High-strength structural bolting assemblies for preloading Part 3: System HR — Hexagon bolt and nut assemblies.
8.BS EN 14399-4:2015. 2015. High-strength structural bolting assemblies for preloading Part 4: System HV — Hexagon bolt and nut assemblies.
9.Ebrahimi, S., and S. R. Mirghaderi. 2023. “A new friction–slip brace damper to improve seismic performance of braced frames.” J. Constr. Steel Res., 207. https://doi.org/10.1016/j.jcsr.2023.107945.
10. FEMA P695. 2009. Quantification of Building Seismic Performance Factors. Fema P695.
11. Gagnon, L., M. Morandini, and G. L. Ghiringhelli. 2020. “A review of friction damping modeling and testing.” Arch. Appl. Mech., 90 (1): 107–126. https://doi.org/10.1007/s00419-019-01600-6.
12. Ghafouri-Nejad, A., M. Alirezaei, S. M. Mirhosseini, and E. Zeighami. 2021. “Parametric study on seismic response of the knee braced frame with friction damper.” Structures, 32: 2073–2087. https://doi.org/10.1016/j.istruc.2021.04.009.
13. Ghorbani, H. R., and F. R. Rofooei. 2020. “A novel double slip loads friction damper to control the seismic response of structures.” Eng. Struct., 225. https://doi.org/10.1016/j.engstruct.2020.111273.
14. Goedecke, A. 2013. “Transient Effects in Friction.” Transient Eff. Frict., 1–16.
15. Izadinia, M., M. A. Rahgozar, and O. Mohammadrezaei. 2012. “Response modification factor for steel moment-resisting frames by different pushover analysis methods.” J. Constr. Steel Res., 79: 83–90. https://doi.org/10.1016/j.jcsr.2012.07.010.
16. Jaisee, S., F. Yue, L. Chen, W. Yin, H. Gong, and C. Wang. 2019. “Shaking table investigations on the seismic performance of a steel frame with optimized passive energy dissipation devices.” IOP Conf. Ser. Earth Environ. Sci., 330 (2). https://doi.org/10.1088/1755-1315/330/2/022081.
17. Jaisee, S., F. Yue, and Y. H. Ooi. 2021. “A state-of-the-art review on passive friction dampers and their applications.” Eng. Struct., 235. https://doi.org/10.1016/j.engstruct.2021.112022.
18. Kiadarbandsari, S., M. Firoozi Nezamabadi, H. Abbasi, and F. Yaghoobi Vayeghan. 2022. “Analytical and experimental investigation of steel friction dampers and horizontal brake pads in chevron frames under cyclic loads.” Structures, 40: 256–272. https://doi.org/10.1016/j.istruc.2022.04.015.
19. Lignos, D. G., and H. Krawinkler. 2011. “Deterioration Modeling of Steel Components in Support of Collapse Prediction of Steel Moment Frames under Earthquake Loading.” J. Struct. Eng., 137 (11): 1291–1302. https://doi.org/10.1061/(asce)st.1943-541x.0000376.
20. Liu, S., Z. Lu, P. Li, S. Ding, and F. Wan. 2020. “Shaking table test and numerical simulation of eddy-current tuned mass damper for structural seismic control considering soil-structure interaction.” Eng. Struct., 212: 110531.
https://doi.org/10.1016/j.engstruct.2020.110531.
21. Loo, W. Y., P. Quenneville, and N. Chouw. 2014. “A new type of symmetric slip-friction connector.” J. Constr. Steel Res., 94: 11–22.
https://doi.org/10.1016/j.jcsr.2013.11.005.
22. Mahmoudi, M., and M. G. Abdi. 2012. “Evaluating response modification factors of TADAS frames.” J. Constr. Steel Res., 71: 162–170.
https://doi.org/10.1016/j.jcsr.2011.10.015.
23. Mashayekhi, M. R., A. Shirpour, and R. Sadeghi. 2023. “Finding Optimum Parameters of Passive Tuned Mass Damper by PSO, WOA, and Hybrid PSO-WOA (HPW) Algorithms.” J. Soft Comput. Civ. Eng., 7 (4): 72–92. Assistant Professor, Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran.
https://doi.org/10.22115/scce.2023.352340.1489.
24. Monir, H. S., and K. Zeynali. 2013. “A modified friction damper for diagonal bracing of structures.” J. Constr. Steel Res., 87: 17–30. https://doi.org/10.1016/j.jcsr.2013.04.004.
25. Mualla, I. H., and B. Belev. 2002. “Performance of steel frames with a new friction damper device under earthquake excitation.” Eng. Struct., 24 (3): 365–371. https://doi.org/10.1016/S0141-0296(01)00102-X.
26. Pall, A. S., and C. Marsh. 1982. “Response of Friction Damped Braced Frames.” J. Struct. Div., 108 (6): 1313–1323.
https://doi.org/10.1061/JSDEAG.0005968.
27. Pall, A. S., C. Marsh, and P. Fazio. 1980. “Friction Joints for Seismic Control of Large Panel Structures.” J. Prestress. Concr. Inst., 25 (6): 38–61. https://doi.org/10.15554/pcij.11011980.38.61.
28. Persson, B. N. J. 2013. Sliding friction: physical principles and applications. Springer Science & Business Media.
29. Shanmuga Priya, D., A. Cinitha, P. K. Umesha, and N. R. Iyer. 2015. “A critical review on enhancing the seismic response of buildings with energy dissipation methods.” J. Struct. Eng., 42 (3): 218–228.
30. Sui, W., X. Wang, and Z. Wang. 2021. “Experimental study on mechanical properties of the steel friction pads used in a rotational friction damper.” Structures, 29: 1808–1818.
https://doi.org/10.1016/j.istruc.2020.11.079.
31. Symans, M. D., F. A. Charney, A. S. Whittaker, M. C. Constantinou, C. A. Kircher, M. W. Johnson, and R. J. McNamara. 2008. “Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Developments.” J. Struct. Eng., 134 (1): 3–21. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(3).
32. Terblanche, J. L. F. 2015. “Modelling of Slotted Bolted Friction Connections as Seismic Energy Dissipaters in Braced Steel Frames.” Stellenbosch University.
33. Whittaker, A., G. Hart, and C. Rojahn. 1999. “Seismic Response Modification Factors.” J. Struct. Eng., 125 (4): 438–444.
https://doi.org/10.1061/(ASCE)0733-9445(1999)125:4(438).