تغییرات سطوح NF-kBp65، ABCA1 و نیمرخ لیپیدی متعاقب هشت هفته تمرین هوازی پیشرونده و مکمل یاری سبوس برنج در مردان دارای اضافه وزن
الموضوعات :
عباس لعل سازگار
1
,
شهرام غلامرضایی دارسرا
2
,
محمد رضا فدایی چافی
3
1 - گروه تربیت بدنی و علوم ورزشی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
2 - گروه تربیت بدنی و علوم ورزشی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران.
3 - گروه تربیت بدنی و علوم ورزشی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
الکلمات المفتاحية: اضافه وزن, تمرین هوازی پیشرونده, سبوس برنج, التهاب, NF-kBp65, ABCA1,
ملخص المقالة :
هدف: از تاثیر همزمان این دو مداخله اطلاعات زیادی در دست نیست.از این رو، مطالعه حاضر با هدف بررسی تغییرات سطوح NF-kBp65، ABCA1 و نیمرخ لیپیدی با تمرینات هوازی پیشرونده و مصرف سبوس برنج در مردان دارای اضافه وزن اجرا شد.
روش :تعداد 60 مرد دارای اضافه وزن در چهار گروه 15 نفری شامل گروه های کنترل، سبوس برنج، تمرین هوازی و تمرین هوازی+سبوس برنج در این مطالعه شرکت کردند. برنامه تمرین هوازی پیشرونده طی هشت هفته با شدت 60 تا 75 درصد ضربان قلب بیشیه اجرا شد. مصرف روزانه سبوس برنج 10 گرم بود که در دو وعده مصرف گردید. سنجش سطوح NF-kBp65، ABCA1 و نیمرخ لیپیدی با کیت های اختصاصی انجام گرفت.
یافته ها: هر سه گروه مداخله، کاهش معنادار NF-kBp65 و افزایش معنادار ABCA1 را نسبت به گروه کنترل نشان دادند، اما تفاوت معناداری بین گروه های مداخله برای سطوح NF-kBp65 و ABCA1 مشاهده نشد (0.05<p). علاوه بر این، باوجود بهبود نیمرخ لیپیدی در هر سه گروه مداخله نسبت به گروه کنترل، افزایش HDL و کاهش کلسترول، VLDL و تریگلیسیرید در گروه تمرین+سبوس نسبت به گروه های تمرین و سبوس برنج به تنهایی معنادار بود (0.05>p).
نتیجه گیری:مصرف سبوس برنج به همراه تمرین هوازی پیشرونده میتواند نقش این تمرینات در بهبود نیمرخ لیپیدی را به صورت معناداری افزایش دهد و اثر سینرژیک داشته باشد.
1. Choe EK, Shivakumar M, Lee SM, Verma A, Kim D. Dissecting the clinical relevance of polygenic risk score for obesity—a cross-sectional, longitudinal analysis. International Journal of Obesity. 2022;46(9):1686-93.
2. Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiology & behavior. 2008;94(2):206-18.
3. Goyal A, Nimmakayala KR, Zonszein J. Is there a paradox in obesity? Cardiology in review. 2014;22(4):163-70.
4. De Heredia FP, Gómez-Martínez S, Marcos A. Obesity, inflammation and the immune system. Proceedings of the Nutrition Society. 2012;71(2):332-8.
5. Ağar M, Güngör K, Güngör N, Kavrut M, MADENLP A. Vitamin D supplementation inhibits NF-kB signaling pathway in lean and obese women. European review for medical and pharmacological sciences. 2022;26:3973-7.
6. Dolzhenko A, Richter T, Sagalovsky S. Role of nuclear factor (NF)-kB protein in atherosclerosis and diabetes: a potential therapeutic target. Problems of Endocrine Pathology. 2015;54(4):87-104.
7. Shehzad A, Ha T, Subhan F, Lee YS. New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases. European journal of nutrition. 2011;50:151-61.
8. Ferrante Jr A. Obesity‐induced inflammation: a metabolic dialogue in the language of inflammation. Journal of internal medicine. 2007;262(4):408-14.
9. Babashamsi MM, Koukhaloo SZ, Halalkhor S, Salimi A, Babashamsi M. ABCA1 and metabolic syndrome; a review of the ABCA1 role in HDL-VLDL production, insulin-glucose homeostasis, inflammation and obesity. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019;13(2):1529-34.
10. Liu Y, Tang C. Regulation of ABCA1 functions by signaling pathways. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2012;1821(3):522-9.
11. Zhao G-J, Tang S-L, Lv Y-C, Ouyang X-P, He P-P, Yao F, et al. Antagonism of betulinic acid on LPS-mediated inhibition of ABCA1 and cholesterol efflux through inhibiting nuclear factor-kappaB signaling pathway and miR-33 expression. PloS one. 2013;8(9):e74782.
12. Vincent V, Thakkar H, Aggarwal S, Mridha AR, Ramakrishnan L, Singh A. ATP-binding cassette transporter A1 (ABCA1) expression in adipose tissue and its modulation with insulin resistance in obesity. Diabetes, metabolic syndrome and obesity: targets and therapy. 2019:275-84.
13. Ghorbanian B, Ravassi A, Kordi MR, Hedayati M. The effects of rope training on lymphocyte ABCA1 expression, plasma ApoA-I and HDL-c in boy adolescents. International journal of endocrinology and metabolism. 2013;11(2):76.
14. Knapik D, Young N, Blazek A, Wu L-C, Eubank T, Jarjour W, et al. Exercise antagonizes local and systemic inflammation via suppression of NF-κB activation. Osteoarthritis and Cartilage. 2013;21:S61-S2.
15. Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. Journal of applied physiology. 2005;98(4):1154-62.
16. Saji N, Francis N, Schwarz LJ, Blanchard CL, Santhakumar AB. The antioxidant and anti-inflammatory properties of rice bran phenolic extracts. Foods. 2020;9(6):829.
17. Sivamaruthi BS, Alagarsamy K, Thangaleela S, Bharathi M, Kesika P, Chaiyasut C. Composition, microbiota, mechanisms, and anti-obesity properties of Rice bran. Foods. 2023;12(6):1300.
18. Moazamigoodarzi M, Gholamrezaei Darsara S, ََAzarbayjani MA, Elmiye A. The Simultaneous Effect of Aerobic Exercise and Rice Bran Extract Consumption on Inflammatory Genes Expression in White Adipose Tissue of Obese Female Rats. Journal of Sport Biosciences. 2023;15(4):5-20.
19. Seesen M, Semmarath W, Yodkeeree S, Sapbamrer R, Ayood P, Malasao R, et al. Combined black rice germ, bran supplement and exercise intervention modulate aging biomarkers and improve physical performance and lower-body muscle strength parameters in aging population. International Journal of Environmental Research and Public Health. 2020;17(8):2931.
20. Tazakori Z, Dehghan M, Iranparvar M, Zare M, Foladi N, Mohmmadi R. Effect of rice bran powder on blood glucose levels and serum lipid parameters in diabetes patient II. 2007.
21. Kunnumakkara AB, Shabnam B, Girisa S, Harsha C, Banik K, Devi TB, et al. Inflammation, NF-κB, and chronic diseases: how are they linked? Critical Reviews™ in Immunology. 2020;40(1).
22. Serasanambati M, Chilakapati SR. Function of nuclear factor kappa B (NF-kB) in human diseases-a review. South Indian Journal of Biological Sciences. 2016;2(4):368-87.
23. Shoelson SE, Lee J, Yuan M. Inflammation and the IKKβ/IκB/NF-κB axis in obesity-and diet-induced insulin resistance. International journal of obesity. 2003;27(3):S49-S52.
24. Liu Y, Liu S-x, Cai Y, Xie K-l, Zhang W-l, Zheng F. Effects of combined aerobic and resistance training on the glycolipid metabolism and inflammation levels in type 2 diabetes mellitus. Journal of physical therapy science. 2015;27(7):2365-71.
25. Patel S, Santani D. Role of NF-κB in the pathogenesis of diabetes and its associated complications. Pharmacological reports. 2009;61(4):595-603.
26. Lira FS, Rosa JC, Pimentel GD, Tarini VA, Arida RM, Faloppa F, et al. Inflammation and adipose tissue: effects of progressive load training in rats. Lipids in Health and Disease. 2010;9:1-10.
27. Ray PD, Maclellan RA, He J, Liu Z, Wu J. Downregulation of RelA (p65) by rapamycin inhibits murine adipocyte differentiation and reduces fat mass of C57BL/6J mice despite high fat diet. International Scholarly Research Notices. 2014;2014(1):540582.
28. Rosa JC, Lira FS, Eguchi R, Pimentel GD, Venâncio DP, Cunha CA, et al. Exhaustive exercise increases inflammatory response via toll like receptor‐4 and NF‐κBp65 pathway in rat adipose tissue. Journal of Cellular Physiology. 2011;226(6):1604-7.
29. Thoma A, Lightfoot AP. NF-kB and inflammatory cytokine signalling: role in skeletal muscle atrophy. Muscle Atrophy. 2018:267-79.
30. Adaikalakoteswari A, Rema M, Mohan V, Balasubramanyam M. Oxidative DNA damage and augmentation of poly (ADP-ribose) polymerase/nuclear factor-kappa B signaling in patients with type 2 diabetes and microangiopathy. The international journal of biochemistry & cell biology. 2007;39(9):1673-84.
31. Ye Z, Lu Y, Wu T. The impact of ATP-binding cassette transporters on metabolic diseases. Nutrition & Metabolism. 2020;17(1):61.
32. Hasan MM, Hosen MB, Rahman MM, Howlader MZH, Kabir Y. Association of ATP binding cassette transporter 1 (ABCA 1) gene polymorphism with type 2 diabetes mellitus (T2DM) in Bangladeshi population. Gene. 2019;688:151-4.
33. Ghaznavi H, Aali E, Soltanpour MS. Association study of the ATP-binding cassette transporter A1 (ABCA1) Rs2230806 genetic variation with lipid profile and coronary artery disease risk in an Iranian population. Open access Macedonian journal of medical sciences. 2018;6(2):274.
34. Xu M, Zhou H, Wang J, Li C, Yu Y. The expression of ATP-binding cassette transporter A1 in Chinese overweight and obese patients. International journal of obesity. 2009;33(8):851-6.
35. Simpson KA, Singh MAF. Effects of exercise on adiponectin: a systematic review. Obesity. 2008;16(2):241-56.
36. Tayebi SM, Khademosharie M, Parsa TA, Abaszadegan M, Saeidi A, Nenasheva A. The acute effect of running exercise on liver abca1 gene expression in male Wistar rats. Человек Спорт Медицина. 2019;19(S1):43-9.
37. Rashidlamir A, Saadatnia A, Ebrahimi-Atri A, Delphan M. Effect of eight weeks of wrestling and circuit fitness training on APO lipoprotein AI and lymphocyte ABCA1 gene expression in well-trained wrestlers. International Journal of Wrestling Science. 2011;1(2):48-53.
38. Butcher LR, Thomas A, Backx K, Roberts A, Webb R, Morris K. Low-intensity exercise exerts beneficial effects on plasma lipids via PPARγ. Medicine & Science in Sports & Exercise. 2008;40(7):1263-70.
39. Tofighi A, Rahmani F, Qarakhanlou BJ, Babaei S. The effect of regular aerobic exercise on reverse cholesterol transport A1 and apo lipoprotein aI gene expression in inactive women. Iranian Red Crescent Medical Journal. 2015;17(4).
40. Jessup W, Gelissen IC, Gaus K, Kritharides L. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Current opinion in lipidology. 2006;17(3):247-57.
41. Tsubakio-Yamamoto K, Matsuura F, Koseki M, Oku H, Sandoval JC, Inagaki M, et al. Adiponectin prevents atherosclerosis by increasing cholesterol efflux from macrophages. Biochemical and biophysical research communications. 2008;375(3):390-4.
42. Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ, González-Garrido A, Villarreal-Molina T. The role of the ATP-binding cassette A1 (ABCA1) in human disease. International journal of molecular sciences. 2021;22(4):1593.
43. Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports medicine. 2014;44:211-21.
44. Michel L. Blood lipid responses after continuous and accumulated aerobic exercise. Sport J. 2006;245:29-54.
45. Marinangeli CP, Varady KA, Jones PJ. Plant sterols combined with exercise for the treatment of hypercholesterolemia: overview of independent and synergistic mechanisms of action. The Journal of nutritional biochemistry. 2006;17(4):217-24.
46. Gordon B, Chen S, Durstine JL. The effects of exercise training on the traditional lipid profile and beyond. Current sports medicine reports. 2014;13(4):253-9.
47. Saji N, Francis N, Schwarz LJ, Blanchard CL, Santhakumar AB. Rice bran derived bioactive compounds modulate risk factors of cardiovascular disease and type 2 diabetes mellitus: An updated review. Nutrients. 2019;11(11):2736.
48. Nagendra Prasad M, Sanjay K, Shravya Khatokar M, Vismaya M, Nanjunda Swamy S. Health benefits of rice bran-a review. J Nutr Food Sci. 2011;1(3):1-7.
49. Kurtys E, Eisel UL, Hageman RJ, Verkuyl JM, Broersen LM, Dierckx RA, et al. Anti-inflammatory effects of rice bran components. Nutrition reviews. 2018;76(5):372-9.
50. Boonloh K, Kukongviriyapan V, Kongyingyoes B, Kukongviriyapan U, Thawornchinsombut S, Pannangpetch P. Rice bran protein hydrolysates improve insulin resistance and decrease pro-inflammatory cytokine gene expression in rats fed a high carbohydrate-high fat diet. Nutrients. 2015;7(8):6313-29.
51. Candiracci M, Justo ML, Castano A, Rodriguez-Rodriguez R, Herrera MD. Rice bran enzymatic extract–supplemented diets modulate adipose tissue inflammation markers in Zucker rats. Nutrition. 2014;30(4):466-72.
52. Park H, Yu S, Kim W. Rice bran oil attenuates chronic inflammation by inducing m2 macrophage switching in high-fat diet-fed obese mice. Foods. 2021;10(2):359.
53. Shen J, Yang T, Xu Y, Luo Y, Zhong X, Shi L, et al. δ-Tocotrienol, isolated from rice bran, exerts an anti-inflammatory effect via MAPKs and PPARs signaling pathways in lipopolysaccharide-stimulated macrophages. International journal of molecular sciences. 2018;19(10):3022.
54. Cannon J, Micalos P, Pak S. A study protocol to evaluate a fermented rice bran supplement and resistance training on immune function and muscle performance in healthy older people. Journal of Science and Medicine in Sport. 2019;22:S79.
55. Mu J, Lin Q, Chen Y, Wang J, Yu X, Huang F, et al. Rice bran active peptide (RBAP) inhibited macrophage differentiation to foam cell and atherosclerosis in mice via regulating cholesterol efflux. Phytomedicine. 2024;132:155864.
56. Chithra PK, Sindhu G, Shalini V, Parvathy R, Jayalekshmy A, Helen A. Dietary Njavara rice bran oil reduces experimentally induced hypercholesterolaemia by regulating genes involved in lipid metabolism. British Journal of Nutrition. 2015;113(8):1207-19.
57. Yang S-C, Huang W-C, Ng XE, Lee M-C, Hsu Y-J, Huang C-C, et al. Rice bran reduces weight gain and modulates lipid metabolism in rats with high-energy-diet-induced obesity. Nutrients. 2019;11(9):2033.
58. Maleki S, Azarbayjani MA, Malayeri SR, Peeri M, Ahmadabad SR. The effect of aerobic exercise and ethanolic extract of rice bran on the expression of Acetyl-CoA Carboxylase and HMGCR genes in the liver tissue of rats fed with a high-fat diet. Health Nexus. 2024;2(3):89-100.