Green synthesis of iron nanoparticles via Rhizoclonum riparium (Roth) Harvey: A promising nanotherapy against the promastigote forms of Leishmania donovani parasites
الموضوعات :
Sagardeep Dey
1
,
Anwesha Mondal
2
,
Ishita Bhattacharya
3
,
Nibedita Pyne
4
,
Santanu Paul
5
1 - Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
2 - Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
3 - Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
4 - Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
5 - Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
الکلمات المفتاحية: Green nanosynthesis, Iron nanoparticles (INPs), Leishmania donovani, MTT assay, Nanobiotechnology, Rhizoclonium riparium (Roth) Harvey, Visceral leishmaniasis,
ملخص المقالة :
Visceral leishmaniasis, a life-threatening parasitic disease caused by Leishmania donovani (Roth) Harvey and transmitted by Phlebotomus sandflies, continues to pose a significant global health concern. Conventional therapies like amphotericin B and miltefosine are often limited by severe side effects and the emergence of resistance, necessitating the development of safer and more effective alternatives. In this study, iron-nanoparticles (INPs) were biosynthesized using green macroalga Rhizoclonium riparium using FeCl₃ (0.005 M) at pH 6, and the synthesized INPs were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, and dynamic light scattering (DLS), confirming their spindle-shaped morphology with average particle size of 82 nm. In vitro anti-leishmanial activity of the INPs was assessed against L. donovani using MTT assay, demonstrating significant efficacy with an IC₅₀ value of 43.36 µg/mL. These results suggest that algal-mediated INPs represent a promising eco-friendly nanotherapeutic strategy for the treatment of visceral leishmaniasis.
Akhoundi, M., Kuhls, K., Cannet, A., Votýpka, J., Marty, P., Delaunay, P., Sereno, D., 2016. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoSNegl. Trop. Dis. 10(3), e0004349.
DOI: https://doi.org/10.1371/journal.pntd.0004349.
Ahmed, M.B., Neama, A., Ahmed, F.M.N.A., 2023. Effect of biosynthesized iron oxide nanoparticles against anterior flagella of Leishmania tropica. HIV Nurs. 23(1), 731-735.
DOI: https://doi.org/10.31838/hiv23.01.123.
Ahmed, N., Vione, D., Rivoira, L., Carena, L., Castiglioni, M., Bruzzoniti, M.C., 2021. A review on the degradation of pollutants by Fenton-like systems based on zero-valent iron and persulfate: Effects of reduction potentials, pH, and anions occurring in wastewaters. Molecules 26(15), 4584.
DOI: https://doi.org/10.3390/molecules26154584.
Atef, Z., Livani, F., Koohsar, F., Faridnia, R., Yadagiri, G., Kalani, H., 2025. Zinc selenide (ZnSe) nanoparticle coated with green seaweed (Ulva fasciata) hydroalcoholic extract as an anti-leishmanial compound on leishmania major. PLOS ONE 20(4), e0321219.
DOI: https://doi.org/10.1371/journal.pone.0321219.
Babes, L., Denizot, B., Tanguy, G., Le Jeune, J.J., Jallet, P., 1999. Synthesis of iron oxide nanoparticles used as MRI contrast agents: A parametric study. J. Colloid Interface Sci. 212(2), 474-482.
DOI: https://doi.org/10.1006/jcis.1998.6053.
Baiocco, P., Ilari, A., Ceci, P., Orsini, S., Gramiccia, M., Di Muccio, T., Colotti, G., 2011. Inhibitory effect of silver nanoparticles on trypanothione reductase activity and Leishmania infantum proliferation. ACS Med. Chem. Lett. 2(3), 230-233.
DOI: https://doi.org/10.1021/ml1002629.
Banerjee, S., Banerjee, I., Dutta, M., Pal, R., 2021a. Fabrication of iron nanoparticles using Leptolyngbya valderiana and investigation of its Cr (VI) removal potential in the free and biomass-associated forms. Algal Res. 58, 102373.
DOI: https://doi.org/10.1016/j.algal.2021.102373.
Banerjee, S., Bhattacharya, A., Roychoudhury, P., Dasgupta, A.K., Dutta, M., Pal, R., 2021b. Arthrospira platensis (Cyanobacteria) a potential biofactory for fluoromagnetic nanoiron production. Phycologia 60(1), 62-72.
DOI: https://doi.org/10.1080/00318884.2020.1851010.
Banerjee, S., Islam, S., Chattopadhyay, A., Sen, A., Kar, P. 2022. Synthesis of silver nanoparticles using underutilized fruit Baccaurea ramiflora (Latka) juice and its biological and cytotoxic efficacy against MCF-7 and MDA-MB 231 cancer cell lines. S. Afr. J. Bot. 145, 228-235.
DOI: https://doi.org/10.1016/j.sajb.2021.09.016.
Beets-Tan, R.G.H., Van Engelshoven, J.M.A., Greve, J.W.M., 1998. Hepatic adenoma and focal nodular hyperplasia: MR findings with superparamagnetic iron oxide-enhanced MRI. Clin. Imaging 22(3), 211-215.
DOI: https://doi.org/10.1016/S0899-7071(97)00117-4.
Bensy, A.D.V., Christobel, G.J., Muthusamy, K., Alfarhan, A., Anantharaman, P., 2022. Green synthesis of iron nanoparticles from Ulva lactuca and bactericidal activity against enteropathogens. J. King Saud Univ. Sci. 34(10), 101888.
DOI: https://doi.org/10.1016/j.jksus.2022.101888.
Bhattacharya, I., Pyne, N., Paul, S., 2024. In vitro and in silico approaches manifest the anti-leishmanial activity of wild edible mushroom Amanita princeps. In Silico Pharmacol. 13(6), 1-22.
DOI: https://doi.org/10.1007/s40203-024-00287-0.
Bhattacharya, I., Paul, S., 2024. Mushroom and mushroom-derived compounds in the management of leishmaniasis. Res. J. Biotechnol. 20(1) 250-259.
DOI: https://doi.org/10.25303/201rjbt2500259.
Boelaert, M., Meheus, F., Sanchez, A., Singh, S.P., Vanlerberghe, V., Picado, A., Meessen, B., Sundar, S., 2009. The poorest of the poor: A poverty appraisal of households affected by visceral leishmaniasis in Bihar, India. Trop. Med. Int. Health 14(6), 639-644.
DOI: https://doi.org/10.1111/j.1365-3156.2009.02279.x.
Bora, D., 1999. Epidemiology of visceral leishmaniasis in India. Natl. Med. J. India 12(2), 62-68.
Brahmachari, U.N., 1922. A new form of cutaneous leishmaniasis-dermal leishmanoid. Ind. Med. Gaz. 57(4), 125-127.
Brayner, R., Yéprémian, C., Djediat, C., Coradin, T., Herbst, F., Livage, J., Fiévet, F., Couté, A., 2009. Photosynthetic microorganism-mediated synthesis of akaganeite (β-FeOOH) nanorods. Langmuir 25(17), 10062-10067.
DOI: https://doi.org/10.1021/la9010345.
Chan, C.F., Kirpotin, D.B., Bunn Jr., P.A., 1993. Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. J. Magn. Magn. Mater. 122(1-3), 374-378.
DOI: https://doi.org/10.1016/0304-8853(93)91113-L.
Chandran, M., Yuvaraj, D., Christudhas, L., Kv, R., 2016. Bio-synthesis of iron nanoparticles using the brown seaweed, Dictyota dicotoma. Biotechnol. 12(12), 112.
Chappuis, F., Sundar, S., Hailu, A., Ghalib, H., Rijal, S., Peeling, R.W., Alvar, J., Boelaert, M., 2007. Visceral leishmaniasis: What are the needs for diagnosis, treatment and control? Nat. Rev. Microbiol. 5(11), 873-882.
DOI: https://doi.org/10.1038/nrmicro1748.
Cheng, W., Yang, X., Yang, D., Zhang, T., Tian, L., Dao, J., Feng, Z., Hu, W., 2025. Recent advances in research on inhibitory effects of seaweed extracts against parasites. Mar. Drugs 23(4), 171.
DOI: https://doi.org/10.3390/md23040171.
Croft, S.L., Sundar, S., Fairlamb, A.H., 2006. Drug resistance in leishmaniasis. Clin. Microbiol. Rev. 19(1), 111- DOI:126. https://doi.org/10.1128/CMR.19.1.111-126.2006.
De Souza, A., Marins, D.S.S., Mathias, S.L., Monteiro, L.M., Yukuyama, M.N., Scarim, C.B., Löbenberg, R., Bou-Chacra, N.A., 2018. Promising nanotherapy in treating leishmaniasis. Int. J. Pharm. 547, 421-431.
DOI: https://doi.org/10.1016/j.ijpharm.2018.06.018.
Desjeux, P., 2004. Leishmaniasis: Current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis. 27(5), 305-318.
DOI: https://doi.org/10.1016/j.cimid.2004.03.004.
Dhamnetiya, D., Jha, R.P., Shalini, Bhattacharyya, K., 2021. India’s performance in controlling visceral leishmaniasis as compared to Brazil over past three decades: Findings from the global burden of disease study. J. Parasit. Dis. 45(4), 877-886.
DOI: https://doi.org/10.1007/s12639-021-01375-0.
El-Kassas, H.Y., Aly-Eldeen, M.A., Gharib, S.M., 2016. Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: Characterization and application for lead bioremediation. Acta Oceanol. Sin. 35, 89-98.
DOI: https://doi.org/10.1007/s13131-016-0880-3.
El-Sheekh, M.M., El-Kassas, H.Y., Shams El-Din, N.G., Eissa, D.I., El-Sherbiny, B.A., 2021. Green synthesis, characterization applications of iron oxide nanoparticles for antialgal and wastewater bioremediation using three brown algae. Int. J. Phytoremediation 23(14), 1538-1552.
DOI: https://doi.org/10.1080/15226514.2021.1915957.
Fraga-García, P., Kubbutat, P., Brammen, M., Schwaminger, S., Berensmeier, S., 2018. Bare iron oxide nanoparticles for magnetic harvesting of microalgae: From interaction behavior to process realization. Nanomaterials 8(5), 292.
DOI: https://doi.org/10.3390/nano8050292.
Ghanbariasad, A., Taghizadeh, S.M., Show, P.L., Nomanbhay, S., Berenjian, A., Ghasemi, Y., Ebrahiminezhad, A., 2019. Controlled synthesis of iron oxyhydroxide (FeOOH) nanoparticles using secretory compounds from Chlorella vulgaris microalgae. Bioengineered 10(1), 390-396.
DOI: https://doi.org/10.1080/21655979.2019.1661692.
Gill, N., Pandey, D., Roy, N., 2021. Kala-azar in India- progress and challenges towards its elimination as a public health problem. Wkly. Epidemiol. Rec. 26, 267-279.
Gupta, A.K., Gupta, M., 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995-4021.
DOI: https://doi.org/10.1016/j.biomaterials.2004.10.012.
Haris, M., Fatima, N., Iqbal, J., Chalgham, W., Mumtaz, A.S., El-Sheikh, M.A., Tavafoghi, M., 2023. Oscillatoria limnetica mediated green synthesis of iron oxide (Fe2O3) nanoparticles and their diverse in vitro bioactivities. Molecules 28(5), 2091.
DOI: https://doi.org/10.3390/molecules28052091.
Hurissa, Z., Gebre-Silassie, S., Hailu, W., Tefera, T., Lalloo, D.G., Cuevas, L.E., Hailu, A., 2010. Clinical characteristics and treatment outcome of patients with visceral leishmaniasis and HIV co-infection in northwest Ethiopia. Trop. Med. Int. Health 15(7), 848-855.
DOI: https://doi.org/10.1111/j.1365-3156.2010.02550.x.
Iida, H., Takayanagi, K., Nakanishi, T., Osaka, T., 2007. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J. Colloid Interface Sci. 314(1), 274-280.
DOI: https://doi.org/10.1016/j.jcis.2007.05.047.
Jebali, A., Kazemi, B., 2013. Nano-based antileishmanial agents: A toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol. In Vitro 27(6), 1896-1904.
DOI: https://doi.org/10.1016/j.tiv.2013.06.002.
Karimi, A., Alborzi, A., Amanati, A., 2016. Visceral leishmaniasis: An update and literature review. Arch. Pediatr. Infect. Dis. 4(3), e31612.
DOI: https://doi.org/10.5812/pedinfect.31612.
Kassi, M., Kassi, M., Afghan, A.K., Rehman, R., Kasi, P.M., 2008. Marring leishmaniasis: The stigmatization and the impact of cutaneous leishmaniasis in Pakistan and Afghanistan. PLoSNegl. Trop. Dis. 2(10), e259.
DOI: https://doi.org/10.1371/journal.pntd.0000259.
Kaur, R., Kumar, R., Chaudhary, V., Devi, V., Dhir, D., Kumari, S., Yanadaiah, P., Pandey, K., Murti, K., Pal, B., 2024. Prevalence of HIV infection among visceral leishmaniasis patients in India: A systematic review and meta-analysis. Clin. Epidemiol. Glob. Health 25, 101504.
DOI: https://doi.org/10.1016/j.cegh.2023.101504.
Kazemi, M.S., Imani, Z., 2023. Effect of secondary metabolite compounds of Dracocephalum kotschyi Boiss plant on synthesis of Cu nanoparticles. Trends Phytochem. Res. 7(4), 311-321.
DOI: https://doi.org/10.71596/tpr.2023.3061356.
Khaleelullah, M.M.S.I., Murugan, M., Radha, K.V., Thiyagarajan, D., Shimura, Y., Hayakawa, Y., 2017. Synthesis of super-paramagnetic iron oxide nanoparticles assisted by brown seaweed Turbinaria decurrens for removal of reactive navy-blue dye. Mater. Res. Express 4(10), 105038.
DOI: https://doi.org/10.1088/2053-1591/aa9131.
Khatami, M., Alijani, H., Sharifi, I., Sharifi, F., Pourseyedi, S., Kharazi, S., Nobre, M.A.L., Khatami, M., 2017. Leishmanicidal activity of biogenic Fe3O4 nanoparticles. Sci. Pharm. 85(4), 36.
DOI: https://doi.org/10.3390/scipharm85040036.
Kota, S., Dumpala, P., Sajja, R., Anantha, R., 2023. Phytoconstituents of Chromolaena odorata (L.) leaf extract for the synthesis of copper oxide/copper nanoparticles and evaluation of their biological potential in wound healing. Trends Phytochem. Res. 7(3), 186-206.
DOI: https://doi.org/10.30495/tpr.2023.1990359.1363.
Lukeš, J., Mauricio, I.L., Schönian, G., Dujardin, J.C., Soteriadou, K., Dedet, J.P., Kuhls, K., Tintaya, K.W.Q., Jirků, M., Chocholová, E., Haralambous, C., Pratlong, F., Oborník, M., Horák, A., Ayala, F.J., Miles, M.A., 2007. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc. Natl. Acad. Sci. U.S.A. 104(22), 9375-9380.
DOI: https://doi.org/10.1073/pnas.0703678104.
Mahdavi, M., Namvar, F., Ahmad, M.B., Mohamad, R., 2013. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5), 5954-5964.
DOI: https://doi.org/10.3390/molecules18055954.
Mashjoor, S., Yousefzadi, M., Zolgharnain, H., Kamrani, E., Alishahi, M., 2018. Organic and inorganic nano-Fe3O4: Alga Ulva flexuosa-based synthesis, antimicrobial effects and acute toxicity to briny water rotifer Brachionus rotundiformis. Environ. Pollut. 237, 50-64.
DOI: https://doi.org/10.1016/j.envpol.2018.02.036.
Matheson, L.J., Tratnyek, P.G., 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28(12), 2045-2053.
DOI: https://doi.org/10.1021/es00061a012.
Mohammadhosseini, M., Mahdavi, B., Kianasab, M.R., 2025. From plant to nanoparticle: Evaluating the biological efficacy of Cannabis sativa L. methanol extract, unlocking the biopotential of Cannabis sativa L. in the green fabrication of silver nanoparticles and their characterization. Trends Phytochem. Res. 9(1), 78-94. DOI: https://doi.org/10.71596/tpr.2025.1203169.
Mohamed Abdoul-Latif, F., Ainane, A., Aboubaker, I.H., Houssein Kidar, B., Mohamed, J., Lemrani, M., Abourriche, A., Ainane, T., 2023. Ericaria amentacea algae extracts: A sustainable approach for the green synthesis of silver oxide nanoparticles and their effectiveness against leishmaniasis. Processes 11(11), 3227. DOI: https://doi.org/10.3390/md23040172.
Mohapatra, M., Anand, S., 2011. Synthesis and applications of nano-structured iron oxides/hydroxides-A review. Int. J. Eng. Sci. Technol. 2(8), 127-146.
DOI: https://doi.org/10.4314/ijest.v2i8.63846.
Mohebali, M., Rezayat, M.M., Gilani, K., Sarkar, S., Akhoundi, B., Esmaeili, J., Satvat, T., Elikaee, S., Charehdar, S., Hooshyar, H., 2009. Nanosilver in the treatment of localized cutaneous leishmaniasis caused by Leishmania major (MRHO/IR/75/ER): An in vitro and in vivo study. Daru 17(4), 285-289.
Mondal, A., Mukherjee, A., Pal, R., 2024a. Psychosynthesis of nanoiron particles and their applications-A review. Biocatal. Agric. Biotechnol. 55, 102986.
DOI: https://doi.org/10.1016/j.bcab.2023.102986.
Mondal, A., Dey, I., Mukherjee, A., Ismail, A., Satpati, G.G., Banerjee, S., Paul, S., Paul, S., Pal, R., 2024c. Spirulina biomass loaded with iron nanoparticles: A novel biofertilizer for the growth and enrichment of iron content in rice plants. Biocatal. Agric. Biotechnol. 61, 103387.
DOI: https://doi.org/10.1016/j.bcab.2024.103387.
Mondal, A., Paul, S., Pal, R., Paul, S., 2024b. Nano iron loaded algal biomass: For better yield, amino acid and iron content in rice-A ‘nano-phycofertilizer’. Algal Res. 81, 103573.
DOI: https://doi.org/10.1016/j.algal.2024.103573.
Murray, H.W., 1999. Kala-azar as an AIDS-related opportunistic infection. AIDS Patient Care STDS 13(8), 459-465.
DOI: https://doi.org/10.1089/108729199318183.
Palaniyandi, T., Baskar, G., Bhagyalakshmi, V., Viswanathan, S., Abdul Wahab, M.R., Govindaraj, M.K., Sivaji, A., Rajendran, B.K., Kaliamoorthy, S., 2023. Biosynthesis of iron nanoparticles using brown algae Spatoglossum asperum and its antioxidant and anticancer activities through in vitro and in silico studies. Part. Sci. Technol. 41(7), 916-929.
DOI: https://doi.org/10.1080/02726351.2022.2159900.
Pyne, N., Paul, S., 2022. Screening of medicinal plants unraveled the leishmanicidal credibility of Garcinia cowa; highlighting Norcowanin, a novel anti-leishmanial phytochemical through in-silico study. J. Parasit. Dis. 46(1), 202-214.
DOI: https://doi.org/10.1007/s12639-021-01441-7.
Rastogi, V., Singh, B., Saxena, U., Singh, P., Jain, A., Yadav, P., 2025. Nanotherapeutics in Leishmaniasis. In Applications of Nanotherapeutics and Nanotheranostics in Managing Infectious Diseases. Academic Press, pp. 523-550.
DOI: https://doi.org/10.1016/B978-0-443-28836-4.00022-6.
Roychoudhury, P., Ghosh, S., Pal, R., 2016. Cyanobacteria mediated green synthesis of gold-silver nanoalloy. J. Plant Biochem. Biotechnol. 25, 73-78.
DOI: https://doi.org/10.1007/s13562-015-0311-0.
Roychoudhury, P., Golubeva, A., Dąbek, P., Pryshchepa, O., Sagandykova, G., Pomastowski, P., Gloc, M., Dobrucka, R., Kurzydłowski, K., Buszewski, B., Witkowski, A., 2022. Study on biogenic spindle-shaped iron-oxide nanoparticles by Pseudostaurosira trainorii in field of laser desorption/ionization applications. Int. J. Mol. Sci. 23(19), 11713.
DOI: https://doi.org/10.3390/ijms231911713.
Sadiq Hawezy, H.J., Sdiq, K.H., Qadr, V.A., Anwer, S.S., Salih, S.J., 2020. Biosynthesis of magnetite-nanoparticles using microalgae (Spirulina SP and Spirogyra SP). Plant Arch. 11(7), 1222.
DOI: https://doi.org/10.37506/ijphrd.v11i7.10263.
Salem, D.M.S.A., Ismail, M.M., Aly-Eldeen, M.A., 2019. Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea, Egypt. Egypt. J. Aquat. Res. 45(3), 197-204.
DOI: https://doi.org/10.1016/j.ejar.2019.07.002.
Salem, D.M.S.A., Ismail, M.M., Tadros, H.R.Z., 2020. Evaluation of the antibiofilm activity of three seaweed species and their biosynthesized iron oxide nanoparticles (Fe3O4-NPs). Egypt. J. Aquat. Res. 46(4), 333-339.
DOI: https://doi.org/10.1016/j.ejar.2020.09.001.
Shakibaie, M., Khorramizadeh, M.R., Faramarzi, M.A., Sabzevari, O., Shahverdi, A.R., 2010. Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase‐2 expression. Biotechnol. Appl. Biochem. 56(1), 7-15.
DOI: https://doi.org/10.1042/BA20100042.
Stauch, A., Sarkar, R.R., Picado, A., Ostyn, B., Sundar, S., Rijal, S., Boelaert, M., Dujardin, J.C., Duerr, H.P., 2011. Visceral leishmaniasis in the Indian subcontinent: Modelling epidemiology and control. PLoSNegl. Trop. Dis. 5(11), e1405.
DOI: https://doi.org/10.1371/journal.pntd.0001405.
Subramaniyam, V., Subashchandrabose, S.R., Ganeshkumar, V., Thavamani, P., Chen, Z., Naidu, R., Megharaj, M., 2016. Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass. Bioresour. Technol. 211, 698-703.
DOI: https://doi.org/10.1016/j.biortech.2016.03.154.
Subramaniyam, V., Subashchandrabose, S.R., Thavamani, P., Megharaj, M., Chen, Z., Naidu, R., 2015. Chlorococcum sp. MM11—A novel phyco-nanofactory for the synthesis of iron nanoparticles. J. Appl. Phycol. 27, 1861-1869.
DOI: https://doi.org/10.1007/s10811-014-0492-2.
Thakur, L., Singh, K.K., Shanker, V., Negi, A., Jain, A., Matlashewski, G., Jain, M., 2018. Atypical leishmaniasis: A global perspective with emphasis on the Indian subcontinent. PLoSNegl. Trop. Dis. 12(9), e0006659.
DOI: https://doi.org/10.1371/journal.pntd.0006659.
Tiwari, D.K., Behari, J., Sen, P., 2008. Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by a top-down approach. Curr. Sci. 95, 647-655.
Van Griensven, J., Balasegaram, M., Meheus, F., Alvar, J., Lynen, L., Boelaert, M., 2010. Combination therapy for visceral leishmaniasis. Lancet Infect. Dis. 10(3), 184-194.
DOI: https://doi.org/10.1016/S1473-3099(10)70011-6.
WHO, 2020. Leishmaniasis WHO fact sheet.
WHO, 2023. Global leishmaniasis surveillance, 2022: Assessing trends over the past 10 years. World Health Organ. 471-487.
Yu, C., Tang, J., Su, H., Huang, J., Liu, F., Wang, L., Sun, H., 2022. Development of a novel biochar/iron oxide composite from green algae for bisphenol-A removal: Adsorption and Fenton-like reaction. Environ. Technol. Innov. 28.
DOI: https://doi.org/10.1016/j.eti.2022.102647.
Younas, Z., Ahmad, I., Yousaf, T., Raja, N. ., Mashwani, Z.U.R., 2024. Selenium nanoparticle-mediated enhancement of plant biochemistry and metabolite enrichment: GC-MS profiling of selenium-enriched sesame seed oil. Trends Phytochem. Res. 8(4), 234-247.
DOI: https://doi.org/10.71596/tpr.2024.936631.
Zhang, Y., Mahdavi, B., Mohammadhosseini, M., Rezaei-Seresht, E., Paydarfard, S., Qorbani, M., Karimian, M., Abbasi, N., Ghaneialvar, H., Karimi, E., 2021. Green synthesis of NiO nanoparticles using Calendula officinalis extract: Chemical charactrization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arabian J. Chem. 14(5), 103105.
DOI: https://doi.org/10.1016/j.arabjc.2021.103105.