Effects of NaCl stress on growth, photosynthesis, and phytochemical composition of creeping savory (Satureja spicigera (C. Koch) Boiss.)
الموضوعات :
Borzou Yousefi
1
,
Hoshang Rahmati
2
,
Hooshmand Safari
3
,
Jalal Ghaderi
4
1 - Forests and Rangelands Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Iran
2 - Department of Agriculture, Technical and Engineering Faculty, Payame Noor University, Tehran, Iran
3 - Department of Forests and Rangelands, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Iran
4 - Soil and Water Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Iran
الکلمات المفتاحية: Essential oil, Medicinal plants, Photosynthetic indices, Phytochemicals, Salt stress, Satureja spicigera (C. Koch) Boiss.,
ملخص المقالة :
The study examined the effects of NaCl treatments (50, 100, and 150 mM) on various morpho-physiological, photosynthetic and phytochemical traits of creeping savory, a wild medicinal plant, in a greenhouse experiment based on a completely randomized design (CRD) with three replications. Increasing NaCl concentration led to a linear decline in growth parameters, with the highest reductions at 150 mM. Leaf, shoot, and root fresh and dry weights decreased significantly under all NaCl levels. Photosynthetic index improved at 50 mM but declined at 150 mM NaCl. Chlorophyll index also decreased significantly at 150 mM. Essential oil percentage increased under 50 and 100 mM NaCl, however dropped at 150 mM. While α-pinene, β-bisabolene, terpinene-4-ol, methyl ether thymol, methyl ether carvacrol, trans-caryophyllene, p-cymene, and γ-terpinene were decreased in plants treated with NaCl, the percentages of thymol and carvacrol were increased.
Adams, R.P. (2017) Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 5 Online Ed, Allured Pub Corp, Illinois, USA.
Ali, L., Shaheen, M.R., Ihsan, M.Z., Masood, S., Zubair, M., Shehzad, F., Khalid, A.-U.-H. (2022) Growth, photosynthesis and antioxidant enzyme modulations in broccoli (Brassica oleracea L.) under salinity stress. South Afri. J. Bot. 148:104–111.
DOI: http://dx.doi.org/10.1016/j.sajb.2022.03.050
Assaf, M., Korkmaz, A., Karaman, Ş., Kulak, M. (2022) Effect of plant growth regulators and salt stress on secondary metabolite composition in Lamiaceae species. South Afri. J. Bot. 144:480–493.
DOI: https://doi.org/10.1016/j.sajb.2021.10.030
Atta, K., Mondal, S., Gorai, S., Singh, A.P., Kumari, A., Ghosh, T., Roy, A., Hembram, S., Gaikwad, D.J., Mondal, S., Bhattacharya, S., Jha, U.C., Jespersen, D. (2023) Impacts of salinity stress on crop plants: Improving salt tolerance through genetic and molecular dissection. Front. Plant Sci. 14:1241736.
DOI: https://doi.org/10.3389/fpls.2023.1241736.
Azimzadeh, Z., Hassani, A., Mandoulakani, B.A., Sepehr, E., Morshedloo, M.R. (2023) Intraspecific divergence in essential oil content, composition and genes expression patterns of monoterpene synthesis in Origanum vulgare subsp. vulgare and subsp. gracile under salinity stress. BMC Plant Biol. 23(1):380.
DOI: https://doi.org/10.1186/s12870-023-04387-5.
Balasubramaniam, T., Shen, G., Esmaeili, N., Zhang, H. (2023) Plants’ response mechanisms to salinity stress. Plants (Basel) 12(12):2253.
DOI: https://doi.org/10.3390/plants12122253.
British Pharmacopoeia (1993) Vol. 1. British Pharmacopoeia Commission. H.M. Stationery Office, Great Britain, p. 714.
Bistgani, Z. E., Hashemi, M., Dacosta, M., Craker, L., Maggi, F., Morshedloo, M.R. (2019) Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops Prod. 135:311–320.
DOI: https://doi.org/10.1016/j.indcrop.2019.04.055.
Cheng, Y.-W., Kong, X.-W., Wang, N., Wang, T.-T., Chen, J., Shi, Z.Q. (2020) Thymol confers tolerance to salt stress by activating anti-oxidative defense and modulating Na+ homeostasis in rice root. Ecotoxicol. Environ. Saf. 188:109894.
DOI: https://doi.org/10.1016/j.ecoenv.2019.109894.
Crocoll, C. (2011) Biosynthesis of the Phenolic Monoterpenes, Thymol and Carvacrol, by Terpene Synthases and Cytochrome P450s in Oregano and Thyme. Germany: Academic Dissertation: der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena.
DOI: https://www.db-thueringen.de/receive/dbt_mods_00018555.
Dahanayake, J.M., Perera, P.K., Galappaththy, P., Arawwawala, M. (2020) A mini review on therapeutic potentials of Phyllanthus niruri L. Trends Phytochem. Res. 4(3):101–108.
DOI: https://oiccpress.com/tpr/article/view/11777.
Dehghani Bidgoli, R., Azarnezhad, N., Akhbari, M., Ghorbani, M. (2019) Salinity stress and PGPR effects on essential oil changes in Rosmarinus officinalis L. Agric. Food Secur. 8(2):2019.
DOI: https://doi.org/10.1186/s40066-018-0246-5.
Etri, K., Gosztola, B., Végvári, G., Ficzek, G., Radácsi, P., Simon, G., Pluhár, Z. (2024) Unravelling the impact of drought and salt stresses on Thymus pannonicus: Morpho-physiological and biochemical insights. Plant Stress 13:100557.
DOI: https://doi.org/10.1016/j.stress.2024.100557.
Hameed, A., Ahmed, M.Z., Hussain, T., Aziz, I., Ahmad, N., Gul, B., Nielsen, B.L. (2021) Effects of salinity stress on chloroplast structure and function. Cells 10(8):2023.
DOI: https://doi.org/10.3390/cells10082023.
Hernández-Adasme, C., Palma-Dias, R., Escalona, V.H. (2023) The effect of light intensity and photoperiod on the yield and antioxidant activity of beet microgreens produced in an indoor system. Horticulturae 9:493.
DOI: https://doi.org/10.3390/horticulturae9040493.
Hnilickova, H., Kraus, K., Vachova, P., Hnilicka, F. (2021) Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants (Basel) 10(5):845.
DOI: https://doi.org/10.3390/plants10050845.
Hu, Y., Zheng, T., Dong, J., Li, W., Ma, X., Li, J., Fang, Y., Chen, K., Zhang, K. (2024) Regulation of the main terpenoids biosynthesis and accumulation in fruit trees. Hort. Plant 11(5):1761–1776.
DOI: https://doi.org/10.1016/j.hpj.2024.08.002.
Hussain, M., Ali, I., Jan, F., (2020) Impact of salinity stress on chlorophyll content and photosynthetic efficiency in plants. Environ. Exp. Bot. 178:104–115.
DOI: https://doi.org/10.3389/fpls.2020.00481.
Jamzad, Z. (2012) Flora of Iran, Research Institute of Forests and Rangelands Publication, Tehran, Iran.
Karim, E., Beáta, G., Zsuzsanna, P. (2025) Essential oils under stress: How drought and salinity shape the physiological and biochemical profile of Thymus ×citriodorus. Ind. Crops Prod. 233:121368.
DOI: https://doi.org/10.1016/j.indcrop.2025.121368.
Kazeminia, M., Mehrabi, A., Mahmoudi, R. (2022) Chemical composition, biological activities, and nutritional application of Asteraceae family herbs: A systematic review. Trends Phytochem. Res. 6(3):187–213.
DOI: https://doi.org/10.30495/tpr.2022.1954612.1248.
Kiumarzi, F., Morshedloo, M.R., Zahedi, S.M., Mumivand, H., Behtash, F., Hano, C., Chen, J.T., Lorenzo, J.M. (2022) Selenium nanoparticles (Se-NPs) alleviate salinity damages and improves phytochemical characteristics of pineapple mint (Mentha suaveolens Ehrh.). Plants (Basel) 11:1384.
DOI: https://doi.org/10.3390/plants11101384.
Kulak, M. (2020) Recurrent drought stress effects on essential oil profile of Lamiaceae plants: An approach regarding stress memory. Ind. Crops Prod. 154:112695.
DOI: https://doi.org/10.1016/j.indcrop.2020.112695.
Kumar, S., Abass Ahanger, M., Alshaya, H., Latief Jan, B., Yerramilli, V. (2022) Salicylic acid mitigates salt induced toxicity through the modifications of biochemical attributes and some key antioxidants in capsicum annuum. Saudi J. Biol. Sci. 29:1337–1347.
DOI: https://doi.org/10.1016/j.sjbs.2022.01.028.
Li, X., Zhang, W., Niu, D., Liu, X. (2024) Effects of abiotic stress on chlorophyll metabolism. Plant Sci. 342:112030.
DOI: https://doi.org/10.1016/j.plantsci.2024.112030.
Menezes, R.V., Azevedo Neto, A.D., Oliveira Ribeiro, M., Watanabe Cova, A.M. (2017) Growth and contents of organic and inorganic solutes in amaranth under salt stress. Pesqui. Agropecu. Trop. 47:22–30.
DOI: http://dx.doi.org/10.1590/1983-40632016v4742580.
Mohammadhosseini, M., Frezza, C., Venditti, A., Sarker, S. (2021) A systematic review on phytochemistry, ethnobotany and biological activities of the genus Bunium L. Chem. Biodivers. 18(11):e2100317.
DOI: https://doi.org/10.1002/cbdv.202100317.
Mohammadi, H., Hazrati, S., Parviz, L. (2023) Morphophysiological and biochemical response of savory medicinal plant using silicon under salt stress. Ann. Univ. Mariae Curie-Skłodowska, C Biol. 2:29–40.
DOI: http://dx.doi.org/10.17951/c.2017.72.2.29-40.
Morshedloo, M.R., Craker, L.E., Salami, A., Nazeri, V., Sang, H., Maggi, F. (2017) Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono-and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiol. Biochem. 111:119–128.
DOI: https://doi.org/10.1016/j.plaphy.2016.11.023.
Najafi, F., Khavari-Nejad, R.A., Siah Ali, M. (2010) The effects of salt stress on certain physiological parameters in summer savory (Satureja hortensis L.) plants. Stress Physiol. Biochem. 6:13–21.
Nalawade, A.S., Gurav, R.V., Patil, A.R., Patwekar, M., Patwekar, F. (2022) A comprehensive review on morphological, genetic and phytochemical diversity, breeding and bioprospecting studies of genus Chlorophytum Ker Gawl. from India. Trends Phytochem. Res. 6(1):19–45.
DOI: https://doi.org/10.30495/tpr.2022.1949493.1238.
Nieto, G. (2020) A review on applications and uses of thymus in the food industry. Plants (Basel) 9(8):961.
DOI: https://doi.org/10.3390/plants9080961.
Nouripour-Sisakht, J., Ehsanzadeh, P., Ehtemam, M.H. (2022) Fennel outperforms ajwain and anise in the saline environment: Physiological response mechanisms in germinating seeds and mature plants. Ital. J. Agron. 17(3):2096.
DOI: http://dx.doi.org/10.4081/ija.2022.2096.
Othman, Y.A., Hani, M.B., Ayad, J.Y., St Hilaire, R. (2023) Salinity level influenced morpho-physiology and nutrient uptake of young citrus rootstocks. Heliyon 9(2):e13336.
DOI: https://doi.org/10.1016/j.heliyon.2023.e13336.
Ounoki, R., Ágh, F., Hembrom, R., Ünnep, R., Szögi-Tatár, B., Böszörményi, A., Solymosi, K. (2021) Salt stress affects plastid ultrastructure and photosynthetic activity but not the essential oil composition in spearmint (Mentha spicata L. var. crispa “Moroccan”). Front. Plant Sci. 12:739467.
DOI: https://doi.org/10.3389/fpls.2021.739467.
Pandit, K., Chandni, Kaur, S., Kumar, M., Bhardwaj, R., Kaur, S. (2024) Chapter Six -Salinity stress: Impact on Plant Growth. In: Sharma, A., Kumar, M., Sharma, P. (Eds.), Advances in Food Security and Sustainability. Elsevier, pp. 145−160.
DOI: http://dx.doi.org/10.1016/bs.af2s.2024.07.002.
Rahmati, H., Yousefi, B. (2024) Salt stress alters phytochemical, physio-biochemical, photosynthetic and antioxidant attributes of Satureja mutica. Trends Phytochem. Res. 8(4):248−260.
DOI: https://doi.org/10.71596/tpr.2024.1184720.
Ramakrishna A., Ravishankar, G.A. (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 6(11):1720−1731.
DOI: https://doi.org/10.4161/psb.6.11.17613.
Saadatfar, A., Hossein Jafari, S. (2023) Application of 24-epibrassinolide as an environmentally friendly strategy alleviates negative effects of salinity stress in Satureja khuzistanica Jamzad. JRS 14(3):1−9.
DOI: https://doi.org/10.57647/j.jrs.2024.1403.25.
Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M., Hasanuzzaman, M. (2021) Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10(2):277.
DOI: https://doi.org/10.3390/antiox10020277.
Sarker, U., Oba, S. (2020) The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front. Plant Sci. 11:559876.
DOI: https://doi.org/10.3389/fpls.2020.559876.
Sarmoum, R., Haid, S., Biche, M., Djazouli, Z., Zebib, B., Merah, O. (2019) Effect of salinity and water stress on the essential oil components of Rosemary (Rosmarinus officinalis L.). Agronomy 9:214.
DOI: https://doi.org/10.3390/agronomy9050214.
Shah, S.H., Houborg, R., McCabe, M.F. (2017) Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy 7(3):61.
DOI: https://doi.org/10.3390/agronomy7030061.
Stefanakis, M.K., Giannakoula, A.E., Ouzounidou, G., Papaioannou, C., Lianopoulou, V., Philotheou-Panou, E. (2024) The effect of salinity and drought on the essential oil yield and quality of various plant species of the Lamiaceae family (Mentha spicata L., Origanum dictamnus L., Origanum onites L.). Horticulture 10(3):265.
DOI: https://doi.org/10.3390/horticulturae10030265.
Tsusaka, T., Makino, B., Ohsawa, R., Ezura, H. (2019) Genetic and environmental factors influencing the contents of essential oil compounds in Atractylodes lancea. PLoS One 14:e0217522.
DOI: https://doi.org/10.1371/journal.pone.0217522.
Wang, X., Chen, Z., Sui, N. (2024) Sensitivity and responses of chloroplasts to salt stress in plants. Front. Plant Sci. 15:2024.
DOI: https://doi.org/10.3389/fpls.2024.1374086.
Yousefi, B., Karamian, R. (2025a) Effects of salicylic acid on photosynthetic pigments, osmolytes, and antioxidant enzyme activities in white savory (Satureja mutica Fisch.) exposed to various salt levels. IJHST 12(1):69–82.
DOI: https://doi.org/10.22059/ijhst.2024.365136.693.
Yousefi, B., Karamian, R. (2025b) Effect of salinity stress and salicylic acid on morpho-physiological and growth characteristics Satureja mutica Fisch. & C. A. Mey. JRS 15(1):1–9.
DOI: https://doi.org/10.57647/j.jrs.2025.1501.04.
Yousefi, B., Lebaschy, M., Sefidkon,F., Safari, H. (2023) Effects of different planting densities and organic fertilizers on yield characteristics of Satureja spicigera (K.Koch) Boiss. under rainfed conditions. IJMAPER 39(1):69−81.
DOI: https://doi.org/10.22092/ijmapr.2021.353696.2947.
Zhao, H., Liang, H., Chu, Y., Sun, C., Wei, N., Yang, M., Zheng, C. (2019) Effects of salt stress on chlorophyll fluorescence and the antioxidant system in Ginkgo biloba L. seedlings. Hortscience 54(12):2125–2133.
DOI: https://doi.org/10.21273/HORTSCI14432-19.
Zhao, H.Y., Wei, N., Sun, C.C., Bai, Y.L., Zheng, C.X. (2018) Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings. J. Beijing For. Univ. 40:28–41.
DOI: http://dx.doi.org/10.13332/j.1000-1522.20180258.
Zhu, J.K. (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324.
DOI: https://doi.org/10.1016/j.cell.2016.08.029.
Zushi, K., Matsuzoe, N. (2017) Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Sci. Hortic. 219:216–221.
DOI: https://doi.org/10.1016/j.scienta.2017.03.016.