مدل ساختاری عوامل مؤثر بر استفاده از شبکه¬هاي اجتماعی مجازی: نقش میانجی نگرش به شبکه¬هاي اجتماعی مجازی
الموضوعات :
صغری استوار
1
,
رقیه قربانی
2
,
حسین افلاکی فرد
3
,
محبوبه فولادچنگ
4
1 - استادیار گروه آموزش روانشناسی و مشاوره، دانشگاه فرهنگیان، شیراز، ایران
2 - استادیار گروه آموزش روانشناسی و مشاوره، دانشگاه فرهنگیان، شیراز، ایران
3 - استادیار گروه علوم تربیتی دانشگاه فرهنگیان تهران
4 - دانشیار، گروه روانشناسی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شیراز، شیراز، ایران
الکلمات المفتاحية: شبکه¬های اجتماعی مجازی, تنوع و گستردگی, اطلاع¬رسانی و ارتباط آسان, اعتماد داشتن به شبکه¬های اجتماعی,
ملخص المقالة :
زمینه و هدف: در سالهاى اخير در بين رسانه هاى ارتباطي، شبكه هاى اجتماعي مجازى گسترش زيادى يافتهاند. در اين راستا، در این پژوهش به آزمون مدل علی عوامل مؤثر بر استفاده از شبکه هاي اجتماعی مجازی با میانجی گری نگرش به شبکه هاي اجتماعی مجازی پرداخته شده است.
روش: این پژوهش از نظر روش، همبستگی از نوع مدلیابی معادلات ساختاری بوده است. جامعه آماری پژوهش شامل کلیه دانشجویان کارشناسی پیوسته فرهنگیان شهر شیراز در سال تحصیلی 1403-1402 بودند. از بین آن ها با استفاده از روش نمونهگیری خوشهای تصادفی 211 دانشجو (137 دانشجوی دختر و 74 دانشجوی پسر) انتخاب شدند. ابزار سنجش، پرسشنامه میزان و نگرش به استفاده از شبکه هاي اجتماعی و پرسشنامه عوامل مؤثر بر استفاده از شبكه های اجتماعی مجازی بود.
یافته ها: تحلیلهای الگویابی معادلات ساختاری برازندگی الگوی پیشنهادی را با دادهها مورد حمایت قرار دادند. نتایج نشان داد که عوامل مؤثر بر میزان استفاده از شبکه های اجتماعی بر نگرش به شبکه های اجتماعی اثر مثبت و معنیدار و نگرش به شبکه های اجتماعی بر میزان استفاده از آنها اثر مثبت و معنیدار دارد. همچنین، نتایج نشان داد که عوامل مؤثر بر استفاده از شبکه های مجازی با واسطه گری نگرش به شبکه ها به صورت مثبت و غیرمستقیم بر میزان استفاده از شبکه های مجازی اثرگذار است.
نتیجه گیری: در این مطالعه تلاش شد تا بر اساس مدل پذیرش فناوری، چارچوب مناسبی برای درک و تبیین عوامل تأثیرگذار بر رفتار دانشجویان در استفاده از شبکه های اجتماعی مجازی تدوین و آزمون شود. با توجه به تأیید تمامی روابط پیش بینیشده در مدل از یک سو و میزان واریانس مناسب تبیینشده در مدل از سوی دیگر میتوان نتیجه گرفت که مدل پذیرش فناوری از اثربخشی و کارایی قابلقبولی در زمینه پیشبینی و تبیین رفتار و نگرش دانشجویان مورد مطالعه در استفاده از شبکه های اجتماعی مجازی برخوردار بود.
1. Berestova A, Ermakov D, Aitbayeva A, Gromov E, Vanina E. Social networks to improve the creative thinking of students: How does it works? Thinking skills and creativity. 2021; 41(1): 100912-100921
2. Razavi M. Gender differences in the effect of virtual social networks use on students’ academic performance. Current Psychology. 2021; 40: 744–50.
https://doi.org/10.1007/s12144-018-9991-7. [In Persian]
3. Brophy P. Measuring library performance: principles and techniques. Facet publishing. 2006.
4. Hejazi Moghari, E, Namdari, V, Ghasemi, M, Moghadamzadeh, A. Designing and building a measure and attitude tool to use social networks and investigating its relationship with academic performance. 2016; 4(15).
https://civilica.com/doc/1852101.[In Persian]
5. Khodayari G, Daneshvar Hoseini F, Saeedi H. Virtual Social Networks’ Type and Extent of Usage A Case Study of Mash’had’s Azad University Students. Communication Research. 2014 Dec 1; 21(77):167-92.
6.McQuail D. Audience knowledge: Translation: Montazer al-Qaim, M, Tehran: Office of Media Studies and Development. 4th edition. 2008.
7. Kasperski R, Blau I. Social capital in high-schools: teacher-student relationships within an online social network and their association with in-class interactions and learning. Interactive Learning Environments, 2020, 22: 1-18.
8. Savoldi F, Ferraz de Abreu P. Internet, social capital and e-Incluion in Post-conflict Belfast: Expectations of community workers. Journal of Urban Technology. 2014 Jul 3; 21(3): 49-66.
https://doi.org/10.1080/10630732.2014.940712.
9. Mirzaei H. Essays in science higher education and the Corona crisis in Iran. Tehran Research Institute of Studies. Cultural and social studies, 2019. [In Persian]
10. Karimian K, Parsamehr M, Afshani Seyed A. Sociological study of factors related to the tendency to virtual social networks: A case study of female high school students in Shahrekord. Quarterly Journal of New Media Studies, 2017, 3(10): 169-208.
https://doi.org/10.22054/cs.2017.17353.131. [In Persian]
11. Sunstein CR. Republic: Divided democracy in the age of social media. Princeton University Press. Google Scholar. 2018.
12. Fishbein M, Ajzen L. Belief, attitude, intention and behavior: An introduction to theory and research, Philosophy and Rhetoric, 1975, 10(2): 130-132.
13. Kwon SJ, Park E, Kim KJ. What drives successful social networking services? A comparative analysis of user acceptance of Facebook and Twitter. The Social Science Journal, 2014 Dec 1; 51(4): 534-544.
14. Wei HL, Lin KY, Lu HP, Chuang IH. Understanding the intentions of users to “stick” to social networking sites: a case study in Taiwan. Behaviour & Information Technology. 2015 Feb 1; 34(2): 151-62.
15. Chang CW, Heo J. Visiting theories that predict college students' self-disclosure on Facebook. Computers in Human Behavior. 2014 Jan 1; 30: 79-86.
16. Asiedu NK, Badu EE. Motivating issues affecting students' use of social media sites in Ghanaian tertiary institutions. Library Hi Tech. 2018 Feb 7; 36(1): 167-79.
17. Ha L, Joa Y, Gabay I, Kim K. Does college students' social media use affect school e-mail avoidance and campus involvement? Internet Research. 2018 Feb 6; 28(1): 213-31.
18. Moghavvemi S, Paramanathan T, Rahin M, Sharabati M. Student's perceptions towards using e-learning via Facebook. Behaviour and Information Technology. 2017 Oct 3; 36(10): 1081-100.
19. Nawi NB, Mamun AA, Nasir NA, Shokery NM, Raston NB, Fazal SA. Acceptance and usage of social media as a platform among student entrepreneurs. Journal of Small Business and Enterprise Development, 2017 May 15; 24(2): 375-93.
20. Cheung CM, Chiu PY, Lee MK. Online social networks: Why do students use Facebook? Computers in human behavior. 2011 Jul 1; 27(4): 1337-43.
21. McQuail D. An introduction to mass communication theory. Translator: Ajlali. P. Tehran. Media Studies and Research Center, 2009.
22. Olson J, Signeiser B, Vindal S. Application of communication theories. Translator: Dehghan. A. Tehran Sociologists, 2017.
23. Masrom MB, Busalim AJ, Abuhassna H, Mahmood NH. Understanding students’ behavior in online social networks: a systematic literature review. International Journal of Educational Technology in Higher Education. 2021 Dec; 18: 1-27.
24. Qiao X, Zhu Y. A review of theory and research based on uses and gratifications in HCI. Paper presented at the advances in computer science, environment, ecoinformatics, and education: International Conference, CSEE 2011, Wuhan, China, August 21-22, 2011, Proceedings, Part III 2011 (pp. 232-236). Springer Berlin Heidelberg.
25. Spanò R, Ferri L. Information systems in healthcare: Current issues and future trends. UK: Cambridge Scholar Publishing, 2020 May 4.
26. Teo T, Doleck T, Bazelais P. The role of attachment in Facebook usage: A study of Canadian college students. Interactive Learning Environments, 2018 Feb 17; 26(2): 256-72.
27. Alduaij M. Employing the technology acceptance model to explore the trends of social media adoption and its effect on perceived usefulness and perceived ease of use. Journal of Information Technology Management. 2019 Jul 1; 11(2): 129-43.
28. Nguyen PM, Do YT, Wu WY. Technology acceptance model and factors affecting acceptance of social media: An empirical study in Vietnam. The Journal of Asian Finance, Economics and Business. 2021; 8(6): 1091-9.
29. Zaineldeen S, Hongbo L, Koffi AL, Hassan BM. Technology acceptance model' concepts, contribution, limitation, and adoption in education. Universal Journal of Educational Research. 2020 Oct; 8(11): 5061-71.
30. Weerasinghe S, Hindagolla MC. Technology acceptance model and social network sites (SNS): a selected review of literature. Global Knowledge, Memory and Communication. 2018 Mar 13; 67(3):142-53.
31. Davis FD. A technology acceptance model for empirically testing new end- user information systems: Theory and results. (Doctoral Dissertation, Massachusetts Institute of Technology). United States, 1986.
32. Dumpit DZ, Fernandez CJ. Analysis of the use of social media in Higher Education Institutions(HELs) using the Technology Acceptance Model. International Journal of Educational Technology in Higher Education. 2017 Dec; 14(5): 1-16.
33. Ajzen I. Fishbein M. Understanding attitude and predicting social behavior. New Jersey: Pearson Prentice Hall Publisher. 1980.
34. Davis FD, Bagozzi RP, Warshaw PR. Extrinsic and intrinsic motivation to use computers in the workplace. Journal of applied social psychology. 1992 Jul; 22(14): 1111-32.
35. Venkatesh V, Davis FD. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science. 2000 Feb; 46(2): 186-204.
36. Davis FD. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly. 1989 Sep 1, 13(3): 319-40.
37. Venkatesh V, Bala H. Technology acceptance model 3 and a research agenda on interventions. Decision sciences. 2008 May; 39(2): 273-315.
38. Mahmodi M, Masoomifard M, Mohammadi M. Factors affecting the instructional application of virtual social networks in higher education. Interdisciplinary Journal of Virtual Learning in Medical Sciences. 2020 Sep 1; 11(3): 180-90.
39. Taghavinezhad SZ, Nazari F, Bigdeli Z. Review of factors effecting social networks acceptance among graduate students at Islamic Azad University of Ahvaz. Indian Journal of Science and Technology. 2015 Sep; 8(21): 1-9.
40. Dixit RV, Prakash G. Intentions to use social networking sites (SNS) using technology acceptance model (TAM) an empirical study. Paradigm. 2018 Jun; 22(1): 65-79.
41. Kharaei Masuleh S. Examining the amount and type of students' use of social networks. A case study of postgraduate students of Islamic Azad University, South Tehran Branch. Master's thesis in the field of social communication sciences. 2016. [In Persian]
42. Jha S, Chitnis A, Chitnis R. Understanding behavior pattern of college students towards social networking sites in India. Indian Journal of Computer Science, 2019 Feb 11; 4(1): 26-34.
DOI: 10.17010/ijcs/2019/v4/i1/142415.
43. Noguti V, Singh S, Waller DS. Gender differences in motivations to use social networking sites. In R. English & R. Johns (Eds.), Gender Considerations in Online Consumption Behavior and Internet Use. 2016; 32-49. IGI Global.
DOI:10.4018/978-1-5225-0010-0.CH003.
44. Akbari Tabar AA. Investigating the analysis of virtual social networks. Master thesis. Tehran: Tarbiat Modares University. 2010. [In Persian]
45. Puri A. Investigating the role and influence of Facebook on the formation of social networks from the point of view of pecisalists and experts in media affairs. Senior expert thesis. Tehran: Central Tehran Azad University. 2010. [In Persian]
46. Rajabi Z. A review of the political attitudes of Iranian users in virtual social networks, a case study of Facebook. Senior thesis. Tehran: Alameha Tabatabai University. 2008. [In Persian]
47. Sun Y, Liu L, Peng X, Dong Y, Barnes SJ. Understanding Chinese users’ continuance intention toward online social networks: an integrative theoretical model. Electronic Markets. 2014 Mar; 24(1): 57-66.
48. Rauniar R, Rawski G, Yang J, Johnson B. Technology acceptance model (TAM) and social media usage: an empirical study on Facebook. Journal of enterprise information. Management. 2014 Feb 4; 27(1): 6-30.
49. Kwon SJ, Park E, Kim KJ. What drives successful social networking services? A comparative analysis of user acceptance of Facebook and Twitter. The Social Science Journal. 2014 Dec 1; 51(4): 534-44.
50. Forghani MM, Gholizadeh Gollo S. The relationship between the Use of virtual social networks and changes in students' social capital dimensions (Study Case: students of mohaghegh ardabili university). Journal of new media studies. 2021 Jul 23; 7(26): 273-301. DOI: 10.22054/nms.2021.18846.697
51. Chang CC, Hung SW, Cheng MJ, Wu CY. Exploring the intention to continue using social networking sites: The case of Facebook. Technological Forecasting and Social Change. 2015 Jun 1; 95: 48-56.
52. Doleck T, Bazelais P, Lemay DJ. Examining the antecedents of social networking sites use among CEGEP students. Education and Information Technologies, 2017 Sep; 22(5): 2103-23.
53. Dixit RV, Prakash G. Intentions to use social networking sites (SNS) using technology acceptance model (TAM) an empirical study. Paradigm. 2018 Jun; 22(1): 65-79.
54. Abdullah F, Ward R. Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analyzing commonly used external factors. Computers in human behavior. 2016 Mar 1; 56: 238-56.
55. Kwon SJ, Park E, Kim KJ. What drives successful social networking services? A comparative analysis of user acceptance of Facebook and Twitter. The Social Science Journal. 2014 Dec 1; 51(4): 534-44.
56. Wei HL, Lin KY, Lu HP, Chuang IH. Understanding the intentions of users to "stick" to social networking sites: a case study in Taiwan. Behaviour & Information Technology. 2015 Feb 1; 34(2): 151-62.