Assessment of Mixed Tin-Lead Perovskite as the Absorber Material for Fabrication of Highly Sensitive Broadband Photodetector
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکیKosar Jafarizade 1 , Zahra Hosseini 2 , Hossein Amanati Manbar 3
1 - Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
2 - Faculty Of Advanced Technologies, Shiraz University, Shiraz, Iran
3 - Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
الکلمات المفتاحية: Broadband, High Sensitivity, Mixed Tin-Lead Perovskite, Photodetector, Self-Powered,
ملخص المقالة :
The relatively large bandgaps of the methylammonium lead halide perovskites are the major obstacle to achieving broadband response in the lead-based perovskite photodetectors. Partial or total substitution of lead with tin leads to smaller bandgaps for perovskite materials. Here, we investigated the application of a mixed tin-lead perovskite material, (FASnI3)0.6(MAPbI3)0.4, with small bandgap of 1.24 eV as the absorber material in a perovskite photodetector. The device simulation is performed by using SCAPS simulation software. The effect of different parameters such as absorber layer quality and thickness, interface defects, doping concentration and carrier mobility on the performance of the device is studied. The simulation results clarify that the parameters optimization can result in achieving a self-powered photodetector with broad spectral response from 300 to 1050 nm wavelength, a high responsivity of 0.6 A W-1 at 930 nm, almost flat detectivity of over 1013 Jones and a wide linear dynamic range. We believe this study can provide theoretical guidance for the design of highly sensitive, broadband, mixed tin-lead perovskite photodetectors.
[1] L. Dou, Y.M. Yang, J. You, Z. Hong, W.H. Chang, G. Li, Y. Yang, Solution-
processed hybrid perovskite photodetectors with high detectivity, Nat.
Commun. 5 (2014) 1–6. doi:10.1038/ncomms6404.
[2] H.R.S. Saman Salimpour, Impressive Reduction of Dark Current in InSb
Infrared Photodetector to achieve High Temperature Performance, J.
Optoelectron. Nanostructures. 3 (2018) 81–96.
doi:20.1001.1.24237361.2018.3.4.7.4.
[3] H.G.-B.-O. Somaye Jalaei, Javad Karamdel, Black Phosphorus Mid-Infrared
Photodetector with Circular Au/Pd Antennas, J. Optoelectron.
Nanostructures. 7 (2022) 37–54. doi:10.30495/JOPN.2022.29104.1239.
[4] X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, D. Yang, Trap Assisted Bulk
Silicon Photodetector with High Photoconductive Gain, Low Noise, and Fast
Response by Ag Hyperdoping, Adv. Opt. Mater. 6 (2018) 1–8.
doi:10.1002/adom.201700638.
[5] I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V
compound semiconductors and their alloys, J. Appl. Phys. 89 (2001) 5815–
5875. doi:10.1063/1.1368156.
[6] C. Liu, K. Wang, C. Yi, X. Shi, P. Du, A.W. Smith, A. Karim, X. Gong,
Ultrasensitive solution-processed perovskite hybrid photodetectors, J. Mater.
Chem. C. 3 (2015) 6600–6606. doi:10.1039/c5tc00673b.
[7] K. Wang, C. Liu, C. Yi, L. Chen, J. Zhu, R.A. Weiss, X. Gong, Efficient
Perovskite Hybrid Solar Cells via Ionomer Interfacial Engineering, Adv.
Funct. Mater. 25 (2015) 6875–6884. doi:10.1002/adfm.201503160.
[8] H.-S. Rao, W.-G. Li, B.-X. Chen, D.-B. Kuang, C.-Y. Su, In Situ Growth of
120 cm2
CH3NH3PbBr3 Perovskite Crystal Film on FTO Glass for
Narrowband-Photodetectors, Adv. Mater. 29 (2017) 1602639.
doi:10.1002/adma.201602639.
[9] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient
Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide
Perovskites, Science. 338 (2012) 643–647. doi:10.1126/science.1228604.
[10] Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Highly narrowband
perovskite single-crystal photodetectors enabled by surface-charge
recombination, Nat. Photonics. 9 (2015) 679–686.
doi:10.1038/nphoton.2015.156.
[11] R. Liu, J. Zhang, H. Zhou, Z. Song, Z. Song, C.R. Grice, D. Wu, L. Shen, H.
Wang, Solution-Processed High-Quality Cesium Lead Bromine Perovskite
Photodetectors with High Detectivity for Application in Visible Light
Communication, Adv. Opt. Mater. 8 (2020) 1–7.
doi:10.1002/adom.201901735.
[12] H. Zhou, Z. Song, C.R. Grice, C. Chen, J. Zhang, Y. Zhu, R. Liu, H. Wang,
Y. Yan, Self-powered CsPbBr3 nanowire photodetector with a vertical
structure, Nano Energy. 53 (2018) 880–886.
doi:10.1016/j.nanoen.2018.09.040.
[13] M.M.A. Shahram Rafiee Rafat, Zahra Ahangari, Performance Investigation
of a Perovskite Solar Cell with TiO2 and One Dimensional ZnO Nanorods
as Electron Transport Layers, J. Optoelectron. Nanostructures. 6 (2021) 75–
90. doi: 10.30495/JOPN.2021.28208.1224.
[14] A.N. Seyyed Reza Hosseini, Mahsa Bahramgour, Nagihan Delibas, A
Simulation Study around Investigating the Effect of Polymers on the
Structure and Performance of a Perovskite Solar Celle, J. Optoelectron.
Nanostructures. 7 (2022) 37–50. doi:10.30495/JOPN.2022.29720.1252.
[15] A.K.S. Davood Jalalian, Abbas Ghadimi, Investigation of the Effect of Band
Offset and Mobility of Organic/Inorganic HTM Layers on the Performance
of Perovskite Solar Cells, J. Optoelectron. Nanostructures. 5 (2020) 65–78.
doi: 20.1001.1.24237361.2020.5.2.6.3.
[16] D. Wu, H. Zhou, Z. Song, M. Zheng, R. Liu, X. Pan, H. Wan, J. Zhang, H.
Wang, X. Li, H. Zeng, Welding Perovskite Nanowires for Stable, Sensitive,
Flexible Photodetectors, ACS Nano. 14 (2020) 2777–2787.
doi:10.1021/acsnano.9b09315.
[17] Z. Cheng, K. Liu, J. Yang, X. Chen, X. Xie, B. Li, Z. Zhang, L. Liu, C. Shan,
D. Shen, High-Performance Planar-Type Ultraviolet Photodetector Based
on High-Quality CH3NH3PbCl3 Perovskite Single Crystals, ACS Appl.
Mater. Interfaces. 11 (2019) 34144–34150. doi:10.1021/acsami.9b09035.
[18] Y. Fang, J. Huang, Resolving weak light of sub-picowatt per square
centimeter by hybrid perovskite photodetectors enabled by noise reduction,
Adv. Mater. 27 (2015) 2804–2810. doi:10.1002/adma.201500099.
[19] W. Deng, X. Zhang, L. Huang, X. Xu, L. Wang, J. Wang, Q. Shang, S.T.
Lee, J. Jie, Aligned Single-Crystalline Perovskite Microwire Arrays for
High-Performance Flexible Image Sensors with Long-Term Stability, Adv.
Mater. 28 (2016) 2201–2208. doi:10.1002/adma.201505126.
[20] F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A.D. Sheikh, T. Wu, Ambipolar
solution-processed hybrid perovskite phototransistors, Nat. Commun. 6
(2015) 1–8. doi:10.1038/ncomms9238.
[21] C. Liu, K. Wang, P. Du, E. Wang, X. Gong, A.J. Heeger, Ultrasensitive
solution-processed broad-band photodetectors using CH3NH3PbI3
perovskite hybrids and PbS quantum dots as light harvesters, Nanoscale. 7
(2015) 16460–16469. doi:10.1039/c5nr04575d.
[22] Y. Wang, D. Yang, X. Zhou, D. Ma, A. Vadim, T. Ahamad, S.M. Alshehri,
Perovskite/Polymer Hybrid Thin Films for High External Quantum
Efficiency Photodetectors with Wide Spectral Response from Visible to Near-
Infrared Wavelengths, Adv. Opt. Mater. 5 (2017) 1–6.
doi:10.1002/adom.201700213.
[23] Y. Zhao, C. Li, J. Jiang, B. Wang, L. Shen, Sensitive and Stable Tin–Lead
Hybrid Perovskite Photodetectors Enabled by Double‐Sided Surface
Passivation for Infrared Upconversion Detection, Small. 16 (2020) 2001534.
doi:10.1002/smll.202001534.
[24] J. Im, C.C. Stoumpos, H. Jin, A.J. Freeman, M.G. Kanatzidis, Antagonism
between Spin-Orbit Coupling and Steric Effects Causes Anomalous Band
Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1-xPbxI3, J. Phys. Chem. Lett. 6 (2015) 3503–3509. doi:10.1021/acs.jpclett.5b01738.
[25] T. Nakamura, S. Yakumaru, M.A. Truong, K. Kim, J. Liu, S. Hu, K. Otsuka,
R. Hashimoto, R. Murdey, T. Sasamori, H. Do Kim, H. Ohkita, T. Handa, Y.
Kanemitsu, A. Wakamiya, Sn(IV)-free tin perovskite films realized by in situ
Sn(0) nanoparticle treatment of the precursor solution, Nat. Commun. 11
(2020) 3008. doi:10.1038/s41467-020-16726-3.
[26] B. Zhao, M. Abdi-Jalebi, M. Tabachnyk, H. Glass, V.S. Kamboj, W. Nie,
A.J. Pearson, Y. Puttisong, K.C. Gödel, H.E. Beere, D.A. Ritchie, A.D.
Mohite, S.E. Dutton, R.H. Friend, A. Sadhanala, High Open-Circuit Voltages
in Tin-Rich Low-Bandgap Perovskite-Based Planar Heterojunction
Photovoltaics, Adv. Mater. 29 (2017) 1604744.
doi:10.1002/adma.201604744.
[27] Z. Yang, A. Rajagopal, C.C. Chueh, S.B. Jo, B. Liu, T. Zhao, A.K.Y. Jen,
Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells,
Adv. Mater. 28 (2016) 8990–8997. doi:10.1002/adma.201602696.
[28] S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, J. Seo, S. Il Seok,
Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells
through SnF2-Pyrazine Complex, J. Am. Chem. Soc. 138 (2016) 3974–3977.
doi:10.1021/jacs.6b00142.
[29] X. Xu, C.C. Chueh, P. Jing, Z. Yang, X. Shi, T. Zhao, L.Y. Lin, A.K.Y. Jen,
High-Performance Near-IR Photodetector Using Low-Bandgap
MA0.5FA0.5Pb0.5Sn0.5I3 Perovskite, Adv. Funct. Mater. 27 (2017) 1–6.
doi:10.1002/adfm.201701053.
[30] W. Wang, D. Zhao, F. Zhang, L. Li, M. Du, C. Wang, Y. Yu, Q. Huang, M.
Zhang, L. Li, J. Miao, Z. Lou, G. Shen, Y. Fang, Y. Yan, Highly Sensitive
Low‐Bandgap Perovskite Photodetectors with Response from Ultraviolet to
the Near‐Infrared Region, Adv. Funct. Mater. 27 (2017) 1703953.
doi:10.1002/adfm.201703953.
[31] M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline
semiconductor solar cells, Thin Solid Films. 361 (2000) 527–532.
doi:10.1016/S0040-6090(99)00825-1.
[32] C. Li, Z. Song, D. Zhao, C. Xiao, B. Subedi, N. Shrestha, M.M. Junda, C.
Wang, C. Jiang, M. Al‐Jassim, R.J. Ellingson, N.J. Podraza, K. Zhu, Y. Yan,
Reducing Saturation‐Current Density to Realize High‐Efficiency Low‐
Bandgap Mixed Tin–Lead Halide Perovskite Solar Cells, Adv. Energy
Mater. 9 (2019) 1803135. doi:10.1002/aenm.201803135.
[33] B. Subedi, C. Li, M.M. Junda, Z. Song, Y. Yan, N.J. Podraza, Effects of
intrinsic and atmospherically induced defects in narrow bandgap
(FASnI3)x(MAPbI3)1−x perovskite films and solar cells, J. Chem. Phys. 152
(2020) 064705. doi:10.1063/1.5126867.
[34] W. Abdelaziz, A. Shaker, M. Abouelatta, A. Zekry, Possible efficiency
boosting of non-fullerene acceptor solar cell using device simulation, Opt.
Mater. (Amst). 91 (2019) 239–245. doi:10.1016/j.optmat.2019.03.023.
[35] G. Xu, P. Bi, S. Wang, R. Xue, J. Zhang, H. Chen, W. Chen, X. Hao, Y. Li,
Y. Li, Integrating Ultrathin Bulk-Heterojunction Organic Semiconductor
Intermediary for High-Performance Low-Bandgap Perovskite Solar Cells
with Low Energy Loss, Adv. Funct. Mater. 28 (2018) 1–8.
doi:10.1002/adfm.201804427.
[36] G. Kapil, T. Bessho, C.H. Ng, K. Hamada, M. Pandey, M.A. Kamarudin, D.
Hirotani, T. Kinoshita, T. Minemoto, Q. Shen, T. Toyoda, T.N. Murakami,
H. Segawa, S. Hayase, Strain Relaxation and Light Management in Tin-Lead
Perovskite Solar Cells to Achieve High Efficiencies, ACS Energy Lett. 4
(2019) 1991–1998. doi:10.1021/acsenergylett.9b01237.
[37] G. Kapil, T.S. Ripolles, K. Hamada, Y. Ogomi, T. Bessho, T. Kinoshita, J.
Chantana, K. Yoshino, Q. Shen, T. Toyoda, T. Minemoto, T.N. Murakami,
H. Segawa, S. Hayase, Highly Efficient 17.6% Tin-Lead Mixed Perovskite
Solar Cells Realized through Spike Structure, Nano Lett. 18 (2018) 3600–
3607. doi:10.1021/acs.nanolett.8b00701.
[38] M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann, S.
Zhang, D. Rothhardt, U. Hörmann, Y. Amir, A. Redinger, L. Kegelmann, F.
Zu, S. Albrecht, N. Koch, T. Kirchartz, M. Saliba, T. Unold, D. Neher, The
impact of energy alignment and interfacial recombination on the internal
and external open-circuit voltage of perovskite solar cells, Energy Environ.
Sci. 12 (2019) 2778–2788. doi:10.1039/c9ee02020a.
[39] Y. Raoui, H. Ez-Zahraouy, S. Kazim, S. Ahmad, Energy level engineering
of charge selective contact and halide perovskite by modulating band offset:
Mechanistic insights, J. Energy Chem. 54 (2021) 822–829.
doi:10.1016/j.jechem.2020.06.030.
[40] N. Lakhdar, A. Hima, Electron transport material effect on performance of
perovskite solar cells based on CH3NH3GeI3, Opt. Mater. 99 (2020) 109517.
doi:10.1016/j.optmat.2019.109517.
[41] Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.Q. Wu, S. Chen, X. Dai, B. Chen, B. Hartweg, Z. Yu, Z. Holman, J. Huang, Resolving spatial and energetic
distributions of trap states in metal halide perovskite solar cells, Science.
367 (2020) 1352–1358. doi:10.1126/science.aba0893.
[42] M.S. Chowdhury, S.A. Shahahmadi, P. Chelvanathan, S.K. Tiong, N. Amin,
K. Techato, N. Nuthammachot, T. Chowdhury, M. Suklueng, Effect of deep-
level defect density of the absorber layer and n/i interface in perovskite solar
cells by SCAPS-1D, Results Phys. 16 (2020) 102839.
doi:10.1016/j.rinp.2019.102839.
[43] T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W.E.I. Sha, H. Zhu, Y.
(Michael) Yang, Realizing High Efficiency over 20% of Low‐Bandgap Pb–
Sn‐Alloyed Perovskite Solar Cells by In Situ Reduction of Sn4+, Sol. RRL. 4
(2020) 1900467. doi:10.1002/solr.201900467.
[44] K. Frohna, S.D. Stranks, Hybrid perovskites for device applications, in:
Handb. Org. Mater. Electron. Photonic Devices, Elsevier, 2019: pp. 211–
256. doi:10.1016/B978-0-08-102284-9.00007-3.
[45] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T.
Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-Hole Diffusion
Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite
Absorber, Science. 342 (2013) 341–344. doi:10.1126/science.1243982.
[46] T.S. Ripolles, D. Yamasuso, Y. Zhang, M.A. Kamarudin, C. Ding, D.
Hirotani, Q. Shen, S. Hayase, New Tin(II) Fluoride Derivative as a
Precursor for Enhancing the Efficiency of Inverted Planar Tin/Lead
Perovskite Solar Cells, J. Phys. Chem. C. 122 (2018) 27284–27291.
doi:10.1021/acs.jpcc.8b09609.
[47] C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen,
W. Huang, Highly Sensitive, Fast Response Perovskite Photodetectors
Demonstrated in Weak Light Detection Circuit and Visible Light
Communication System, Small. 15 (2019) 1903599.
doi:10.1002/smll.201903599.