سنتز و شناسایی فوتوکاتالیست کربنفعال اصلاح شده با نانوذرات ZnO/SnO2 و کاربرد آن در تصفیه پساب شهری با فرآیند اکسیداسیون پیشرفته
الموضوعات : فصلنامه علمی - پژوهشی مواد نوینامیرعلی جهانبخشی نژاد 1 , حکیمه شریفی فرد 2 , محمد بنیادی 3 , راضیه حیاتی 4
1 - دانشجوی کارشناسی ارشد، گروه مهندسی شیمی، دانشگاه یاسوج، یاسوج، ایران
2 - استادیار ، گروه مهندسی شیمی، دانشگاه یاسوج، یاسوج، ایران
3 - دانشیار، گروه مهندسی شیمی، دانشگاه یاسوج، یاسوج، ایران
4 - استادیار ، گروه مهندسی مواد،، دانشگاه یاسوج، یاسوج، ایران
الکلمات المفتاحية: کربن فعال, پساب شهری, فرآیند اکسیداسیون پیشرفته, پسماندهای کشاورزی,
ملخص المقالة :
چکیده
مقدمه: به دلیل افزایش جمعیت و فعالیتهای صنعتی، میزان تقاضا برای آب سالم افزایش یافته و از طرفی میزان آب شیرین کاهش یافته است؛ در نتیجه تصفیه پسابها از جمله پساب شهری و صنعتی ضرورت بسیار یافته است. یکی از راههای تصفیه پساب فرآیند اکسیداسیون پیشرفته است. در این پژوهش فرآیند اکسیداسیون پیشرفته با استفاده از فوتوکاتالیست بر پایه کربن فعال اصلاح شده جهت تصفیه پساب شهری شهر یاسوج استفاده شده است. کربن فعال با استفاده از روش فعال سازی شیمیایی از پوست گردو تهیه گردید و سپس توسط کامپوزیتی از نانوذرات ZnO و SnO2 اصلاح گردید و به عنوان فوتوکاتالیست، در راکتور طراحی شده، جهت تصفیه پساب استفاده شد. نتایج آنالیزهای FTIR، XRD و EDX وجود نانوذرات ZnO/SnO2 بر روی سطح کربن فعال اصلاح شده را تایید کرد. به دلیل پوشش این نانوذرات بر روی سطح کربن فعال و در درون حفرات آن، مقدار مساحت سطح ویژه کربن فعال اصلاح شده نسبت به کربن فعال به شدت کاهش یافته است. نتایج آنالیز DRS بیانگر گاف انرژی پایین فوتوکاتالیست سنتز شده و قابلیت کاربرد آن در حضور نور مرئی است. اثر پارامترهای pH، مقدار فوتوکاتالیست، و زمان تحت تابش نور بر میزان کاهش COD پساب شهری در یک راکتور فوتوکاتالیستی بررسی شد. به منظور بهینه سازی اثر پارامترها از روش طرح مرکب مرکزی جهت طراحی آزمایش استفاده شد. نتایج حاصل نشان داد که حداکثر مقدار کاهش COD برابر با 41/97% در pH برابر با 3 ، مقدار فوتوکاتالیست g/L 25/1و مدت زمان تابش نور 45 دقیقه بدست می آید.
[1] Isha Arora, Harshita Chawla, Amrish Chandra, Suresh Sagadevan, Seema Garg; Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst, Inorganic Chemistry Communications, 143, 109700 (2022).
[2] Marwah A. Al‑Nuaim, Asawer A. Alwasiti, Zainab Y. Shnain, The photocatalytic process in the treatment of polluted water, Chemical Papers (2023) 77:677–701.
[3] T. Biyang, C. Hang, D. Jiahui, X. Shan, M. Xiaoyn, X. Yinqi, X. Zongfan, T. Haisheng; Preparation of N-I co-doped TiO2 supported on activated carbon photocatalyst for efficient photocatalytic reduction of Cr(VI) ions, Colloids and Surfaces A: Physicochemical and Engineering Aspects 622 (2021) 126660.
[4] M. Alsaiari, Biomass-derived active carbon (AC) modified TiO2 photocatalyst for efficient photocatalytic reduction of chromium (VI) under visible light, Arabian Journal of Chemistry (2021) 14, 103258.
[5] K.S. Bhavsar, P.K. Labhane, R.B. Dhake, G.H. Sonawane; Solvothermal Synthesis of Activated Carbon Loaded CdS Nanoflowers: Boosted photodegradation of dye by adsorption and photocatalysis synergy, Chemical Physics Letters 744 (2020) 137202.
[6] M. Murugesan, M. Loganathan, P. Senthil Kumar, D.V. N. Vo, Cobalt and nickel oxides supported activated carbon as an effective photocatalysts for the degradation Methylene Blue dye from aquatic environment, Sustainable Chemistry and Pharmacy 21 (2021) 100406.
[7] L. O. Pereira, I. M. Sales, L. P. Zampiere, S. S. Vieira, I. R. Guimaraes, F. Magalhaes, Preparation of magnetic photocatalysts from TiO2, activated carbon and iron nitrate for environmental remediation, Journal of Photochemistry and Photobiology A: Chemistry 382 (2019) 111907.
[8] P. Amornpitoksuk, S. Suwanboon, C. Randorn, Photocatalytic activities of silver compound modified activated carbon@ ZnO: Novel ternary composite visible light-driven photocatalysts, Materials Science in Semiconductor Processing 84 (2018) 50–57.
[9] K. Pirkanniemi, M. Sillanpqaa, Heterogeneous water phase catalysis as an environmental application: a review Chemosphere, 48, 2002, 1047.
[10] Y. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, J. Cho, H. Morko, A comprehensive review of ZnO materials and devices, Journal of Applied Physics., 98, 2005, 41301.
[11]. Xin, Z.; He, Q.; Wang, S.; Han, X.; Fu, Z.; Xu, X.; Zhao, X. Recent Progress in ZnO-Based Nanostructures for Photocatalytic Antimicrobial in Water Treatment: A Review. Appl. Sci. 2022, 12, 7910.
[12] S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu, V. Murugesan, Photocatalytic Degradation of 2,4,6-Trichlorophenol Using Lanthanum Doped ZnO in Aqueous Suspension, Journal of Catalysis Communications, 8, 2007, 1377.
[13] A. Mahmood, M. T. Noman, M. Pechociakova, N.Amor, B. Tomkova, J. Militky, Energy efficient industrial and textile waste for the fabrication of cementitious composites: a review. The Journal of The Textile Institute, 1, 2023, 1-17.
[14] Drake C., (2003), PhD.thesis “Undestanding the low temperature electrical properties of nanocrustalline SnO2 for gas sensor application”, Material Depart. University of Florida.
[15] do Nascimento, J.L.A.; Chantelle, L.; dos Santos, I.M.G.; Menezes de Oliveira, A.L.; Alves, M.C.F. The Influence of Synthesis Methods and Experimental Conditions on the Photocatalytic Properties of SnO2: A Review. Catalysts 2022, 12, 428.
[16] Chiang, Y.J., Lin, C.C., Photocatalytic decolorization of methylene blue in aqueous solutions using coupled ZnO/SnO2 photocatalysts, Powder Technology, 246, 2013, 137-143.
[17] Kadem, A. J., Tan, Z. M., Mohana Suntharam, N., Pung, S., Ramakrishnan, S. (2023). Synthesis of CuO, ZnO and SnO2 Coupled TiO2 Photocatalyst Particles for Enhanced Photodegradation of Rhodamine B Dye. Bulletin of Chemical Reaction Engineering & Catalysis, 18 (3), 506-520.
[18] L Niazi, A Lashanizadegan, H Sharififard, Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions, J. Cleaner Production, 185, 554-561, 2018.
[19] Hashemi-Shahraki Z, Sharififard H, Lashanizadegan A. Grape stalks biomass as raw material for activated carbon production: synthesis, characterization and adsorption ability. Materials Research Express 5(5), 2018, 055603.
[20] M.M. Sabzehmeidani, H. Karimi, M. Ghaedi; Visible light induced photo-degradation of methylene blue by n–p heterojunction CeO2/CuS composite based on ribbon-like CeO2 nanofibers via electrospinning, Polyhedron 170 (2019) 160–171.
[21] Scipioni R, Gazzoli D, Teocoli F, Palumbo O, Paolone A, Ibris N, Brutti S, Navarra MA. Preparation and characterization of nanocomposite polymer membranes containing functionalized SnO2 additives. Membranes 2014; 4: 123–42.
[22] Fageria P, Gangopadhyay S, Pande S. Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible-light. RSC Adv 2014;4: 24962–72.
[23] Haibo O, Feng HJ, Cuiyan Li, C.Liyun FJie. Synthesis of carbon doped ZnO with porous structure and its solar-light photocatalytic properties. Mater Lett 2013;111: 217–20.
[24] Ismail Adel A, Harraz Farid A, Faisal M, El-Toni Ahmed Mohamed, Al-Hajry A, Al-Assiri MS. A facile synthesis of mesoporous Pd-ZnO nanocomposites as efficient chemical sensor. Superlattices Microstruct 2016;95: 128–39.
[25] Sahay PP, Mishra RK, Pandey SN, Jha S, Shamsuddin M. Structural, dielectric and photoluminescence properties of co-precipitated Zn-doped SnO2 nanoparticles. Curr Appl Phys 2013;13: 479–86.
[26] Hamed Tahmouresinejad, Parviz Darvishi, Asghar Lashanizadegan, Hakimeh Sharififard, Treatment of Olefin plant spent caustic by combination of Fenton‑like and foam fractionation methods in a bench scale, Environmental Science and Pollution Research (2022) 29:52438–52456.
[27] N. Jayan, L. Deepak-Bhatlu and S. Thalikassery Akbar, Central Composite Design for Adsorption of Pb(II) and Zn(II) Metals on PKM-2 Moringa oleifera Leaves, ACS Omega 6, 25277 (2021).
[28] Z.M. Shakor, A.A. Abdulrazak and A.A. Shuhaib, Optimization of process variables for hydrogenation of cinnamaldehyde to cinnamyl alcohol over a Pt/SiO2 catalyst using response surface methodology, Chem. Eng. Commun. 209, 827-843 (2022).
[29] A.D. Ogunsola, M.O. Durowoju, A.O. Alade, S.O. Jekayinfa and O. Ogunkunle, Modeling and optimization of two-step shea butter oil biodiesel synthesis using snail shells as heterogeneous base catalysts, Energy Adv. 1, 113 (2022).
[30] Seyyedeh Cobra Azimi, Farhad Shirini, Alireza Pendashteh; Preparation and application of α-Fe2O3@TiO2@SO3H for photocatalytic degradation and COD reduction of woodchips industry wastewater. Environmental Science and Pollution Research (2021) 28:56449–56472.
[31] M.M. Sabzehmeidani, H. Karimi, M. Ghaedi, Enhanced visible light-active CeO2/CuO/Ag2CrO4 ternary heterostructures based on CeO2/CuO nanofiber heterojunctions for the simultaneous degradation of a binary mixture of dyes, New J. Chem., 2020,44, 5033-5048.
[32] محمدحسین برزگر، سنتز یک نمونه نانو فوتوکاتالیست به منظور تخریب برخی آلایندها از یک محیط آبی به کمک انرژی خورشیدی: بهینهسازی با طراحی آزمایش، پایا نامه کارشناسی ارشد، دانشگاه یاسوج، 1396.
[33] طاهره جعفری زاده، پیام حیاتی، حسن زارع نیریزی، زهره مهرآبادی، محمدحسین فرجام، بهینه سازی تخریب فوتوکاتالیستی آالینده دارویی سفالکسین از محلولهای آبی توسط نانو ساختارهای سنتزشده MOC-Zn با استفاده از روش سطح پاسخ، فصلنامه علمی-پژوهشی مواد نوین، بهار 1400، شماره 43، 93-108.
_||_