خواص مکانیکی و خوردگی نانو کامپوزیت مس-اکسید گرافن حاوی 2% اکسید گرافن تولید شده به روش فرآیند اتصال نورد تجمعی (ARB)
الموضوعات : فصلنامه علمی - پژوهشی مواد نوینلاله قلندری 1 , پریسا تاج بخش 2
1 - گروه مهندسی مواد، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
2 - گروه مهندسی مواد، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
الکلمات المفتاحية: خوردگی, اتصال نورد تجمعی, کامپوزیت مس/اکسید گرافن, کرنش پلاستیک شدید, FESEM,
ملخص المقالة :
در این پژوهش برای اولین بار، ورقهای کامپوزیت Cu/Go حاوی %2 اکسید گرافن در چهار مرحله با استفاده از فرایند اتصال نورد تجمعی، در دمای محیط در شرایط بدون روانکار و از طریق اعمال کرنش پلاستیک شدید به منظور دستیابی به ساختارهای با دانههای فوق ریز و نانومتری ساخته شد. به این منظور از مس خالص تجاری و اکسید گرافن استفاده گردید. تغییرات خواص مکانیکی و ریز ساختاری، قبل و بعد از انجام فرایند اتصال نورد تجمعی در چرخههای مختلف تولید، مورد بررسی و مقایسه قرار گرفت. هم چنین، رفتار خوردگی و هدایت الکتریکی کامپوزیت در مراحل مختلف فرایند با یکدیگر، مقایسه شدند. به منظور بررسی خواص مکانیکی کامپوزیت تولید شده، آزمونهای کشش و میکرو سختی و شکست نگاری قبل از انجام فرایند و در چرخههای مختلف فرایند انجام شد. برای مشاهده تغییرات ساختار با افزایش تعداد مراحل فرایند، از میکروسکوپ الکترونی گسیل میدانی (FESEM) مجهز به طیف سنج EDX استفاده شد. مشاهده ریز ساختار نشان داد که در مرحلههای پایینتر پودر اکسید گرافن به صورت تودهای و در مراحل نهایی به صورت یکنواختتر توزیع شده است. مشاهده تصاویر میکروسکوپی الکترونی گسیل میدانی از سطوح شکست در نمونههای آزمون کشش نیز، بیانگر آن بود که شکست به صورت نرم میباشد و عمق دیمپلها با افزایش چرخههای فرایند کاهش مییابد. مقاومت به خوردگی و هدایت الکتریکی کامپوزیت تولید شده نسبت به مس خالص افزایش یافت.
[1] V. Yousefi Mehr, A. Rezaeian, M.R. Toroghinejad, Application of accumulative roll bonding and anodizing process to produce Al–Cu–Al2O3 composite, Mater. Des. 70 (2015) 53–59. doi:https://doi.org/10.1016/j.matdes.2014.12.042.
[2] R.Z. Valiev, R.K. Islamgaliev, I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. (2000). doi:10.1016/S0079-6425(99)00007-9.
[3] G. Sakai, K. Nakamura, Z. Horita, T.G. Langdon, Developing high-pressure torsion for use with bulk samples, Mater. Sci. Eng. A. (2005).
doi:10.1016/j.msea.2005.06.049.
[4] L. Ghalandari, M.M. Moshksar,
High-strength and high-conductive Cu/Ag multilayer produced by ARB, J. Alloys Compd. 506 (2010). doi:10.1016/j.jallcom.2010.06.172.
[5] L. Ghalandari, M.M.M. Mahdavian, M. Reihanian, M. Mahmoudiniya, Production of Al/Sn multilayer composite by accumulative roll bonding (ARB): A study of microstructure and mechanical properties, Mater. Sci. Eng. A. 661 (2016) 179–186. doi:10.1016/j.msea.2016.02.070.
[6] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding proces, Scr. Mater. 40 (1999) 795–800.
[7] L. Chen, Q. Shi, D. Chen, S. Zhou, J. Wang, X. Luo, Research of textures of ultrafine grains pure copper produced by accumulative roll-bonding, Mater. Sci. Eng. A. 508 (2009) 37–42. doi:10.1016/j.msea.2008.12.018.
[8] Y. Ding, J. Jiang, A. Shan, Microstructures and mechanical properties of commercial purity iron processed by asymmetric rolling, Mater. Sci. Eng. A. 509 (2009) 76–80. doi:10.1016/j.msea.2009.01.062.
[9] A. Fattah-alhosseini, A. Reza Ansari, Y. Mazaheri, M. Karimi, M. Haghshenas, An Investigation of mechanical properties in accumulative roll bonded nano-grained pure titanium, Mater. Sci. Eng. A. 688 (2017) 218–224. doi:10.1016/j.msea.2017.02.013.
[10] L. Ghalandari, M.M. Mahdavian, M. Reihanian, Microstructure evolution and mechanical properties of Cu/Zn multilayer processed by accumulative roll bonding (ARB), Mater. Sci. Eng. A. 593 (2014) 145–152. doi:10.1016/j.msea.2013.11.026.
[11] A. Mashhadi, A. Atrian, L. Ghalandari, Mechanical and microstructural investigation of Zn/Sn multilayered composites fabricated by accumulative roll bonding (ARB) process, J. Alloys Compd. 727 (2017) 1314–1323. doi:10.1016/j.jallcom.2017.08.241.
[12] M.M. Mahdavian, L. Ghalandari, M. Reihanian, Accumulative roll bonding of multilayered Cu/Zn/Al: An evaluation of microstructure and mechanical properties, Mater. Sci. Eng. A. 579 (2013) 99–107. doi:10.1016/j.msea.2013.05.002.
[13] A. Melaibari, A. Fathy, M. Mansouri, M.A. Eltaher, Experimental and numerical investigation on strengthening mechanisms of nanostructured Al-SiC composites, J. Alloys Compd. 774 (2019) 1123–1132.
doi:10.1016/j.jallcom.2018.10.007.
[14] X.Y. Yang, Q.S. Mei, X.M. Mei, Y. Ma, F. Chen, L. Wan, J.Y. Li, Materials Science & Engineering A Al matrix composites reinforced by high volume fraction of TiAl 3 fabricated through combined accumulative roll-bonding processes, 754 (2019) 309–317.
[15] F. Ferreira, I. Ferreira, E. Camacho, F. Lopes, A.C. Marques, A. Velhinho, Graphene oxide-reinforced aluminium-matrix nanostructured composites fabricated by accumulative roll bonding, Compos. Part B Eng. 164 (2019) 265–271. doi:https://doi.org/10.1016/j.compositesb.2018.11.075.
[16] W. Zheng, Y.X. Gao, X.P. Wang, H. Lu, L.F. Zeng, Q.F. Fang, High strength and damping capacity of LLZNO/Al composites fabricated by accumulative roll bonding, Mater. Sci. Eng. A. 689 (2017) 306–312. doi:10.1016/j.msea.2017.02.074.
[17] X. Liu, D. Wei, L. Zhuang, C. Cai, Y. Zhao, Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding, Mater. Sci. Eng. A. 642 (2015) 1–6. doi:https://doi.org/10.1016/j.msea.2015.06.032.
[18] J. Phiri, P. Gane, T.C. Maloney, General overview of graphene: Production, properties and application in polymer composites, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 215 (2017) 9–28. doi:10.1016/j.mseb.2016.10.004.
[19] Y. Li, C. Long, W. Tao, A. Li, Q. Zhang, Fractal dimensions of macroporous and hypercrosslinked polymeric adsorbents from nitrogen adsorption data, J. Chem. Eng. Data. (2010). doi:10.1021/je100010d.
[20] X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano-graphene oxide for cellular imaging and drug delivery, Nano Res. (2008). doi:10.1007/s12274-008-8021-8.
[21] X. Liu, D. Wei, L. Zhuang, C. Cai, Y. Zhao, Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding, Mater. Sci. Eng. A. 642 (2015) 1–6. doi:https://doi.org/10.1016/j.msea.2015.06.032.
[22] G. Wu, Z. Yu, L. Jiang, C. Zhou, G. Deng, X. Deng, Y. Xiao, A novel method for preparing graphene nanosheets/Al composites by accumulative extrusion-bonding process, Carbon N. Y. 152 (2019) 932–945.
doi:10.1016/j.carbon.2019.06.077.
[23] M. Fattahi, M. Rostami, F. Amirkhanlu, N. Arabian, E. Ahmadi, H. Moayedi, Fabrication of aluminum TIG welding filler rods reinforced by ZrO2/reduced graphene oxide hybrid nanoparticles via accumulative roll bonding, Diam. Relat. Mater. 99 (2019) 107518. doi:https://doi.org/10.1016/j.diamond.2019.107518.
[24] J.K. Tiwari, A. Mandal, A. Rudra, D. Mukherjee, N. Sathish, Evaluation of mechanical and thermal properties of bilayer graphene reinforced aluminum matrix composite produced by hot accumulative roll bonding, J. Alloys Compd. 801 (2019) 49–59. doi:https://doi.org/10.1016/j.jallcom.2019.06.127.
[25] F. Chen, J. Ying, Y. Wang, S. Du, Z. Liu, Q. Huang, Effects of graphene content on the microstructure and properties of copper matrix composites, Carbon N. Y. 96 (2016) 836–842. doi:10.1016/j.carbon.2015.10.023.
[26] G.C.C. Yao, Q.S.S. Mei, J.Y.Y. Li, C.L.L. Li, Y. Ma, F. Chen, M. Liu, Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding, Mater. Des. 110 (2016) 124–129. doi:10.1016/j.matdes.2016.07.129.
[27] ن.ع. دانشمند سیدحمید, ذاکری محمد, محمدبیگی علی, No Titleتاثیر گرافن بر خواص مکانیکی نانوکامپوزیت مس/گرافن, فرآیندهای نوین در مهندسی مواد (مهندسی مواد مجلسی(. 9 (1994) 141–148.
[28] Graphite and precursors, Choice Rev. Online. (2001). doi:10.5860/choice.38-6194.
[29] M. Alizadeh, M.H. Paydar, Fabrication of Al/SiCP composite strips by repeated roll-bonding (RRB) process, J. Alloys Compd. 477 (2009) 811–816. doi:10.1016/j.jallcom.2008.10.151.
[30] G.C. Yao, Q.S. Mei, J.Y. Li, C.L. Li, Y. Ma, F. Chen, M. Liu, Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding, Mater. Des. 110 (2016) 124–129. doi:10.1016/J.MATDES.2016.07.129.
[31] M. Alizadeh, M. Samiei, Fabrication of nanostructured Al/Cu/Mn metallic multilayer composites by accumulative roll bonding process and investigation of their mechanical properties, Mater. Des. 56 (2014) 680–684. doi:10.1016/j.matdes.2013.11.067.
[32] M.-K. Chung, Y.-S. Choi, J.-G. Kim, Y.-M. Kim, J.-C. Lee, Effect of the number of ECAP pass time on the electrochemical properties of 1050 Al alloys, Mater. Sci. Eng. A. 366 (2004) 282–291. doi:https://doi.org/10.1016/j.msea.2003.08.056.
[33] W. Wei, K.X. Wei, Q.B. Du, Corrosion and tensile behaviors of ultra-fine grained Al–Mn alloy produced by accumulative roll bonding, Mater. Sci. Eng. A. 454–455 (2007) 536–541. doi:https://doi.org/10.1016/j.msea.2006.11.063.
[34] J. Wang, L. Guo, W. Lin, J. Chen, S. Zhang, S. Chen, T. Zhen, Y. Zhang, The effects of graphene content on the corrosion resistance, and electrical, thermal and mechanical properties of graphene/copper composites, New Carbon Mater. 34 (2019) 161–169. doi:https://doi.org/10.1016/S1872-5805(19)60009-0.
_||_