تحلیل عوامل محرک و پیشبینی تغییرات کاربری زمین در منطقه کلانشهری تهران با تأکید بر یک مدل منطقهای یکپارچه
الموضوعات :
فصلنامه علمی برنامه ریزی منطقه ای
هاشم داداش پور
1
,
حسین پناهی
2
,
علی شمس الدینی
3
1 - عضو هیات علمی دانشگاه تربیت مدرس
2 - گروه برنامه ریزی شهری و منطقه ای، دانشکده هنر و معماری، دانشگاه تربیت مدرس، تهران، ایران
3 - گروه سنجش از دور، دانشکده علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران
تاريخ الإرسال : 06 الجمعة , ذو الحجة, 1439
تاريخ التأكيد : 17 الأحد , ذو الحجة, 1440
تاريخ الإصدار : 24 الإثنين , محرم, 1441
الکلمات المفتاحية:
تغییر کاربری زمین,
منطقه کلانشهری تهران,
رگرسیون لجستیک,
شبیهسازی فضایی,
خودکاره سلولی,
ملخص المقالة :
مناطق کلانشهری بهویژه در کشورهای درحالتوسعه با رشد سریع جمعیت روبهرو شدهاند که این امر در دهههای گذشته تأثیرات مخربی را با تغییر در کاربری زمین محیط پیرامونی خود به محیطزیست وارد کرده است. تغییرات کاربری زمین در این مناطق با پیچیدگی و سرعت بالایی رخ داده و موجب تخریب اراضی سبز و کشاورزی، افزایش آلودگی زیستمحیطی و آسیبهای اکولوژیکی شده است. روند برنامهریزی حاضر کاربری زمین، این ضرورت را ایجاد میکند تا بر پایه معیارهای مناسب با محیط طبیعی، اقتصادی و اجتماعی الگوی آینده کاربری زمین مناطق شناسایی شوند بر این اساس، پژوهش حاضر با هدف پیشبینی تغییرات آتی کاربری زمین در منطقه کلانشهری تهران انجام شده است. برای دستیابی به این هدف، در گام نخست تغییرات کاربری زمین در منطقه تحلیل میشود. سپس، با شناسایی میزان تأثیر عواملِ محرکِ تغییر و پتانسیلهای انتقال کاربریها، تغییراتِ کاربری اراضی سالهای آتی ترسیم میشود. لذا، برای این منظور، ابتدا کاربریهای سالهای 1985 ،2000 و 2015 ، با استفاده از نرمافزار ENVI و روش SVM طبقهبندی و تحلیل میشوند. در گام دوم پس از شناسایی عوامل محرک تغییر با روش رگرسیون لجستیک، میزان تأثیر عوامل مشخص میشود. در بخش پیشبینی با ترکیب روشهای مارکوف و خودکار سلولی تغییرات آتی در سالهای 2030 و 2045 شبیه سازیشده است. نتایج تحقیق نشان میدهد که روند تغییرات گذشته در منطقه کلانشهری تهران منجر به تخریب مراتع، زمینهای کشاورزی و زمینهای بایر شده و این روند آسیبمناطق ساختهشده بر منابع با ارزش طبیعی و زیستمحیطی را بیشتر خواهد کرد؛ که در این بین، راهها، فاصله از مناطق ساختهشده و عوامل طبیعی بیشترین تأثیر را بر تغییر دارند. تغییرات در سالهای 2030 و 2045 روند گذشته را خواهد داشت. در این میان، مناطق ساختهشده افزایش یافته و در محورهای غربی، جنوبی و شرقی محدوده بیشترین تغییرات اتفاق خواهد افتاد.
المصادر:
داداش پور, هاشم و نریمان جهانزاد. (1394). شبیه سازی تغییرات آتی کاربری زمین بر اساس الگوی بهینۀ اکولوژیک در مجموعۀ شهری مشهد. پژوهش های جغرافیایی برنامه ریزی شهری,سال 3،شماره 3, تهران، صص 343–359.
داداشپور, هاشم و فردیس سالاریان. (1394). تحلیل تاثیر پراکندهرویی بر تغییر کاربری زمین در منطقه شهری ساری. پژوهش های جغرافیایی برنامه ریزی شهری,سال 7، شماره 3,صص 145–164.
داداشپور, هاشم و امیررضا میری لواسانی. (1394). تحلیل الگوهای فضایی پراکندهرویی در منطقه کلانشهری تهران. برنامه ریزی فضایی (جغرافیا),سال 16،شماره 5 , اصفهان، صص 123– 146.
داداش پور, هاشم, خیرالدین, رضا, یعقوب خانی, مرتضی و بهنام چمنی. (1393). مدلسازی تغییرات کاربری زمین در کلانشهر تهران با استفاده از مدل ,MOLAND.فصلنامه برنامه ریزی منطقه ای، سال 4،شماره 16، مرودشت، صص 49-64.
شمس الدینی، علی و محمدرضا امیری فهلیانی.(1394). بررسی عوامل اثرگذار بر مدیریت کاربری اراضی روستایی در شهرستان ممسنی(با استفاده از مدل ترکیبیTOPSIS-SWOT)، فصلنامه برنامهریزی منطقهای، سال5، شماره19، مرودشت، صص85-100
عبدی دانشپور, زهره و مسعود تارنتاش. (2017). آشکارسازی دگرگونی کاربرد زمین: تحلیل ویژگیهای گسترش برنامهریزینشده در منطقة کلانشهری تهران. نشریه هنرهای زیبا- معماری و شهرسازی, سال 33، شماره3, صص 15–31.
کاویانی, آزاده, فرهودی, رحمتالله, و آزیتا رجبی. (1394). تحلیل الگوی رشد شهر تهران با رویکرد بوم شناسی سیمای سرزمین. پژوهش های جغرافیایی برنامه ریزی شهری, سال 9، شماره3, تهران، تهران، صص407–429
محمودزاده, حسن و قهرمان خوش روی. (1394). کاربرد رگرسیون لجستیک در مدل سازی توسعه شهری(مطالعه موردی: منطقه شهری بناب). فصلنامه مطالعات شهری, شماره 14, سنندج، صص31–46
سرشماری عمومی نفوس و مسکن،1395، مرکز آمار ایران
سازمان مدیریت و برنامه ریزی کشور،آمایش استان تهران، 1388
منصوریان, حسین. (1395). پویش جمعیتی و الگوهای پوشش زمین در منطقۀ کلانشهری تهران. پژوهش های جغرافیایی برنامه ریزی شهری, سال 4، شماره 4, تهران، صص613–633
وزرات کشور،تقسیمات اداری و سیاسی کشور،1393
Aburas, M. M., Ho, Y. M., Ramli, M. F., & Ash’aari, Z. H. (2016). The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: A review. International Journal of Applied Earth Observation and Geoinformation, 52, pp380–389.
Al-sharif, A., & Pradhan, B. (2014). Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian Journal of Geosciences, 7(10), pp4291–4301.
Amini Parsa, V., & Salehi, E. (2016). Spatio-temporal analysis and simulation pattern of land use/cover changes, case study: Naghadeh, Iran. Journal of Urban Management, 5(2), pp43–51.
Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2012). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21(1), pp265–275.
Arsanjani, J. J., Kainz, W., & Mousivand, A. J. (2011). Tracking dynamic land-use change using spatially explicit Markov chain based on cellular automata: The case of Tehran. International Journal of Image and Data Fusion, 2(4), pp329–345.
Cheng, J., & Masser, I. (2004). Understanding spatial and temporal processes of urban growth: Cellular automata modelling. Environment and Planning B: Planning and Design, 31(2), pp167–194.
Dadashpoor, H., & Alidadi, M. (2017). Towards decentralization: Spatial changes of employment and population in Tehran Metropolitan Region, Iran. Applied Geography, 85, pp51–61.
Dadashpoor, H., Azizi, P., & Moghadasi, M. (2019). Analyzing spatial patterns, driving forces and predicting future growth scenarios for supporting sustainable urban growth: Evidence from Tabriz metropolitan area, Iran. Sustainable Cities and Society, 47, 101502.
Dadashpoor, H., Azizi, P., & Moghadasi, M. (2019). Land use change, urbanization, and change in landscape pattern in a metropolitan area. Science of The Total Environment, 655, pp707-719.
Dadashpoor, H., & Salarian, F. (2018). Urban sprawl on natural lands: analyzing and predicting the trend of land use changes and sprawl in Mazandaran city region, Iran. Environment, Development and Sustainability, pp1-22.
Dadashpoor, H., & Ahani, S. (2019). Land tenure-related conflicts in peri-urban areas: A review. Land Use Policy, 85, pp218-229.
Dadashpoor, H., & Ahani, S. (2019). A conceptual typology of the spatial territories of the peripheral areas of metropolises. Habitat International, 90, 102015.
Dadashpoor, H., & Nateghi, M. (2017). Simulating spatial pattern of urban growth using GIS-based SLEUTH model: a case study of eastern corridor of Tehran metropolitan region, Iran. Environment, Development and Sustainability, 19(2), pp527–547.
El-Khoury, A. (2012). Modeling Land-Use Changes in the South Nation Watershed using Dyna-CLUE. University of Ottawa.
Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222(20–22), pp3761–3772.
Han, H., Yang, C., & Song, J. (2015). Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China. Sustainability, 7(4), pp4260–4279.
Han, Y., & Jia, H. (2017). Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China. Ecological Modelling, 353, pp107–116.
Hosseinali, F., Alesheikh, A. A., & Nourian, F. (2013). Agent-based modeling of urban land-use development, case study: Simulating future scenarios of Qazvin city. Cities, 31, pp105–113.
Hu, Y., Zheng, Y., & Zheng, X. (2013). Simulation of land-use scenarios for Beijing using CLUE-S and Markov composite models. Chinese Geographical Science, 23(1), 92–100.
Irwin, E. G., & Geoghegan, J. (2001). Theory, data, methods: developing spatially explicit economic models of land use change. Agriculture, Ecosystems & Environment, 85(1–3), pp7–24.
Jiang, W., Chen, Z., Lei, X., He, B., Jia, K., & Zhang, Y. (2016). Simulation of urban agglomeration ecosystem spatial distributions under different scenarios: A case study of the Changsha-Zhuzhou-Xiangtan urban agglomeration. Ecological Engineering, 88(April), pp112–121.
Koomen, E., Koekoek, A., & Dijk, E. (2011). Simulating Land-use Change in a Regional Planning Context. Applied Spatial Analysis and Policy, 4(4), pp223–247.
Ku, C.-A. (2016). Incorporating spatial regression model into cellular automata for simulating land use change. Applied Geography, 69, pp1–9.
Lambin, E. F., Geist, H., & Rindfuss, R. R. (2004). Chapter 1 Introduction : Local Processes with Global Impacts. Land-Use and Land-Cover Change, (Turner), pp1–8.
Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), pp159-174.
Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., Pei, F. (2017). A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168(October), pp94–116.
Manuschevich, D., & Beier, C. M. (2016). Simulating land use changes under alternative policy scenarios for the conservation of native forests in south-central Chile. Land Use Policy, 51, pp350–362.
Oğuz, H. (2004). Modeling urban growth and land use/land cover change in the Houston Metropolitan Area from 2002-2030, (May), pp1–163.
Pontius, R. G. (2000). Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering and Remote Sensing,66(8),1011-1016
Pontius, R. G., & Millones, M. (2011). Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), pp4407–4429.
Puertas, O. L., Henríquez, C., & Meza, F. J. (2014). Assessing spatial dynamics of urban growth using an integrated land use model. Application in Santiago Metropolitan Area, 2010-2045. Land Use Policy, 38, pp415–425.
Rounsevell, M. D. A, Pedroli, B., Erb, K. H., Gramberger, M., Busck, A. G., Haberl, H., Wolfslehner, B. (2012). Challenges for land system science. Land Use Policy, 29(4), pp899-910.
Rounsevell, M. D. A., Reginster, I., Araújo, M. B., Carter, T. R., Dendoncker, N., Ewert, F., Tuck, G. (2006). A coherent set of future land use change scenarios for Europe. Agriculture, Ecosystems and Environment, 114(1), pp57–68.
Shafizadeh-Moghadam, H., Asghari, A., Tayyebi, A., & Taleai, M. (2017). Coupling machine learning, tree-based and statistical models with cellular automata to simulate urban growth. Computers, Environment and Urban Systems, 64, pp297–308.
Silva, E. A., & Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26(6), pp525–552.
Sun, P., Xu, Y., Yu, Z., Liu, Q., Xie, B., & Liu, J. (2016). Scenario simulation and landscape pattern dynamic changes of land use in the Poverty Belt around Beijing and Tianjin: A case study of Zhangjiakou city, Hebei Province. Journal of Geographical Sciences, 26(3), pp272-296
Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. S. A. (2002). Modeling the spatial dynamics of regional land use: The CLUE-S model. Environmental Management, 30(3), pp391–405.
Wu, Q., Li, H. qing, Wang, R. song, Paulussen, J., He, Y., Wang, M., Wang, Z. (2006). Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landscape and Urban Planning, 78(4), pp322–333.
Zarei, A., Dadashpoor, H., & Amini, M. (2016). Determination of the optimal land use allocation pattern in Nowshahr County, Northern Iran. Environment, Development, and Sustainability, 18(1), 37–56.
_||_