Synthesis and optical properties of zinc oxide/carbon quantum dots nanocomposites
الموضوعات :Sedighe Zaheri 1 , Hamid Akherat Doost 2 , Ehsan Koushki 3 , Reza Tayebee 4
1 - Department of Chemistry, Faculty of Sciences, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran
2 - Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran 14696-69191, Iran
3 - Department of Physics, Faculty of Sciences, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran
4 - Department of Chemistry, Faculty of Sciences, Hakim Sabzevari University, Sabzevar, 96179-76487
الکلمات المفتاحية: Energy gap, Nanomaterial synthesis, Zinc oxide/carbon quantum dots nanocomposites,
ملخص المقالة :
Due to their special properties and applications, nanoparticles have received a lot of attention and attracted researchers. Meanwhile, zinc oxide nanoparticles have excellent transparency, electrical, and optical properties. In this research, nanoparticles were synthesized using the hydrothermal method, and a ZnO-CQDs/PVA nanocomposite was prepared using the injection method into a polymer substrate. Optical and structural properties were investigated by various methods such as TEM, XRD, UV-VIS, and DLS. The energy gap in quantum dot zinc oxide-carbon nanocomposite with concentrations of 1240, 2840, and 3720 micrograms injected into the polymer solution was calculated as 3.38, 3.39, and 3.4 eV, respectively. The results show that the energy gap increases with the increase in carbon quantum dots in the nanocomposite indicating the effect of the Burstein-Moss phenomenon. This phenomenon means an increase in the energy gap in semiconductor materials, which can improve the performance of nanoelectronic and optical materials.
Akherat Doost, H., Ghasedi, A., Koushki, E., 2021. Electrical effects of AuNPs and PVA polymers on optical band gap and thermo-optical properties of TiO2 nanoparticles. J. Mol. Liq. 323, 115074.
Akherat Doost, H., Majles Ara, M.H., Koushki, E., 2016. Synthesis and complete Mie analysis of different sizes of TiO2 nanoparticles. Optik 127(4), 1946-1951.
Alim, M.A., Li, S., Liu, F., Cheng, P., 2006. Electrical barriers in the ZnO varistor grain boundaries. Phys. Status Solidi A 203(2), 410-427.
An, S., Joshi, B. N., Lee, M.W., Kim, N.Y., Yoon, S.S., 2014. Electrospun graphene-ZnO nanofiber mats for photocatalysis applications. Appl. Surf. Sci. 294, 24-28.
Aranovich, J.A., Golmayo, D., Fahrenbruch, A.L., Bube, R.H.,1980. Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis. J. Appl. Phys. 51(8), 4260-4268.
Bacaksiz, E., Parlak, M., Tomakin, M., ײzחelik, A., Karakz, M., Altunba, M., 2008. The effects of zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films. J. Alloys Compd. 466(1-2), 447-450.
Baedi, J., Ghasedi, A., Koushki, E., Akrami, B., 2021. Nonlinear response of sodium and potassium doped ZnO along with improvement in bandgap structure: A combined physicochemical study. Physica B Condens. Matter 620, 413279.
Berggren, K.-F., Martino, F.,1971. On the calculation of the compton profile in crystalline LiH. Phys. Rev. B, 3(4), 1509-1511.
Burstein, E., 1954. Anomalous Optical Absorption Limit in InSb. Phys. Rev. 93(3), 632-633.
Chang, J.F., Shen, C.C., Hon, M.H., 2003. Growth characteristics and residual stress of RF magnetron sputtered ZnO:Al films. Ceram. Int. 29(3), 245-250.
Chang, S.J., Su, Y.K., Shei, Y.P.,1995. High quality ZnO thin films on InP substrates prepared by radio frequency magnetron sputtering. II. Surface acoustic wave device fabrication. J. Vac. Sci. Technol. A: Vac. Surf. Films 13(2), 385-388.
Gao, C., Zhong, K., Fang, X., Fang, D., Zhao, H., Wang, D., Li, B., Zhai, Y., Chu, X., Li, J., Wang, X., 2021. Brief Review of photocatalysis and photoresponse properties of ZnO-graphene nanocomposites. Energies 14(19), 6403.
Hartnagel, H., 1995. Semiconducting Transparent Thin Films. Taylor & Francis.
Jalili, Z., Koushki, E., Ehsanian, A.H., Tayebee, R., Maleki, B., 2023. Synthesis, band gap structure and third order non-linear optical properties of zinc tungsten oxide nanocomposite using a single CW laser beam. Front. Chem. 11.
Jia, X., Li, J., Wang, E., 2012. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 4(18), 5572.
Khaled, K., Berardi, U., 2021. Current and future coating technologies for architectural glazing applications. Energy Build. 244, 111022.
Koushki, E., Majles Ara, M.H., Mousavi, S.H., Haratizadeh, H., 2011. Temperature effect on optical properties of colloidal ZnO nanoparticles. Curr. Appl. Phys. 11(5), 1164-1167.
Li, H., Kang, Z., Liu, Y., Lee, S.-T. (2012). Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 22(46), 24230.
Liu, C., Zhang, P., Zhai, X., Tian, F., Li, W., Yang, J., Liu, Y., Wang, H., Wang, W., Liu, W., 2012. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33(13), 3604-3613.
Liu, L., Wang, L., Sun, D., Sun, X., Liu, L., Zhao, W., Tayebee, R., Liu, B., 2023. ZnO-ZnS heterostructure as a potent photocatalyst in the preparation of some substituted chromenes and remarkable antigastrointestinal cancer activity. ACS Omega 8(46), 44276-44286.
Mahan, G.D., 1980. Energy gap in Si and Ge: Impurity dependence. J. Appl. Phys. 51(5), 2634-2646.
Majles Ara, M.H., Akheratdoost, H., Koushki, E. 2015. Self-diffraction and high nonlinear optical properties of carbon nanotubes under CW and pulsed laser illumination. J. Mol. Liq. 206, 4-9.
Nanto, H., Sokooshi, H., Kawai, T., 1993. Aluminum-doped ZnO thin film gas sensor capable of detecting freshness of sea foods. Sensors Actuators B: Chem. 14(1-3), 715-717.
Onodera, A., Takes, M., 2012. Electronic Ferroelectricity in II-VI Semiconductor ZnO. In Advances in Ferroelectrics. InTech.
Sarkar, A., Ghosh, S., Chaudhuri, S., Pal, A.K., 1991. Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films. Thin Solid Films 204(2), 255-264.
Shalahuddin Al Ja’farawy, M., Kusumandari, Purwanto, A., Widiyandari, H., 2022. Carbon quantum dots supported zinc oxide (ZnO/CQDs) efficient photocatalyst for organic pollutant degradation-A systematic review. nviron. Nanotechnol. Monit. Manag. 18, 100681.
Wang, Y., Dong, L., Xiong, R., Hu, A., 2013. Practical access to bandgap-like N-doped carbon dots with dual emission unzipped from PAN@PMMA core-shell nanoparticles. J. Mater. Chem. C 1(46), 7731.
Willander, M., Nur, O., Sadaf, J. R., Qadir, M. I., Zaman, S., Zainelabdin, A., Bano, N., Hussain, I., 2010. Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials 3(4), 2643-2667.
Xu, X., Chen, Y., Zhang, G., Bian, H., Zhao, M., Ma, S., 2018. Optical properties and the band-gap variation in diverse Zn1-xSnxO nanostructures. Superlattices Microstruct. 123, 349-357.
Zhang, M., Li, J., 2009. Carbon nanotube in different shapes. Mater. Today 12(6), 12-18.
Zhao, Q.-L., Zhang, Z.-L., Huang, B.-H., Peng, J., Zhang, M., Pang, D.-W., 2008. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 41, 5116.